

Thomas F. Hagelien (SINTEF), Casper W. Andersen (SINTEF), Jesper Friis
(SINTEF), Francesca L. Bleken (SINTEF), Sylvain Gouttebroze (SINTEF),
Louis Ponet (EPFL), Anders J. Eklund (SINTEF)

2022

SINTEF

Ref. Ares(2023)530802 - 24/01/2023

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 1 | 24

2023-01-24

D3.1-WRAPPER SDK

D3.1: WRAPPER-SDK
DOCUMENT CONTROL

Document Type Other

Status Final

Version 1.0

Responsible Francesca L. Bleken, Jesper Friis (SINTEF)

Author(s) Thomas F. Hagelien (SINTEF), Casper W. Andersen (SINTEF), Jesper Friis (SINTEF),
Francesca L. Bleken (SINTEF), Sylvain Gouttebroze (SINTEF), Louis Ponet (EPFL),
Anders J. Eklund (SINTEF)

Release Date 2022.06.30, 2023.01.24

ABSTRACT

Design considerations and current development status of the ExecFlow Software Development Kit (Ex-
ecFlowSDK).

CHANGE HISTORY

Version Date Comment

0.1 2022-05-30 First Draft. Thomas Hagelien, Jesper Friis, Casper Andersen

0.2 2022-06-05 Updates. Thomas Hagelien, Jesper Friis

0.3 2022-06-28 Updates. Thomas Hagelien

0.4 2022-06-29 Updates. Thomas Hagelien, Jesper Friis, Casper Andersen, Francesca Ble-
ken, Sylvain Gouttebroze

0.5 2022-06-30 Revision. Anders Eklund, Jesper Friis, Sylvain Gouttebroze, Louis Ponet

0.6 2022-06-30 Revision. Finalized by Welchy Cavalcanti and submitted.

1.0 2023-01-24 Added request from EC

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 2 | 24

2023-01-24

TABLE OF CONTENT

Document Control ... 1

Abstract ... 1

Change History .. 1

Dissemination level ... 1

Table of Content ... 2

List of Figures .. 4

List of Tables ... 5

1 Motivation .. 6

2 Introduction.. 6

3 Work carried out / status ... 7

3.1 Design process ... 7

3.1.1 Constraints & considerations .. 7

3.1.1.1 Lessons learned (AiiDA as OTE data source) .. 7

3.1.1.2 Follow future development of AiiDA .. 8

3.1.1.3 Use of existing results from other work packages ... 8

3.1.2 Provenance + semantic interoperability (AiiDA + OTEAPI) ... 8

3.1.3 OTEAPI ... 9

3.1.4 architecture design for the SDK .. 11

3.2 Development of parts of the SDK .. 11

3.2.1 Use cases ... 12

3.2.2 Code generators .. 12

3.2.3 Data model transformations ... 14

3.2.4 Declarative WorkChains (AiiDA) .. 14

3.2.5 CI/CD for Python package creation and deployment .. 14

3.2.6 OTEAPI adoption for AiiDA .. 15

3.2.6.1 Strategy configurations .. 16

Mapping operations .. 16

Filtering operations ... 17

Transformations .. 17

Transformation status ... 18

3.2.6.2 Strategies as CalcFunctions .. 18

3.2.6.3 Declarative pipelines (OTEAPI) ... 19

4 Next steps ... 20

4.1 Full use case demonstration .. 20

4.2 Workflow ontology .. 20

4.3 Documentation .. 20

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 3 | 24

2023-01-24

5 Conclusion .. 21

6 Appendix .. 21

6.1 Nomenclature .. 21

7 Acknowledgment ... 24

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 4 | 24

2023-01-24

LIST OF FIGURES

Figure 1. Main components of the ExecFlowSDK.. 6
Figure 2. Important components of this deliverable. ... 8
Figure 3. Example of an OTEAPI pipeline. ... 9
Figure 4. Context-filter-session diagram showing the communication between a context class, a filter, and the
session. .. 11
Figure 5. Example: Generating AiiDA Data Node from DLite/SOFT type Entities. .. 13
Figure 6. Example: Using a generated AiiDA plugin to instantiate a Data Node generated from a DLite/SOFT
Entities. ... 14
Figure 7. View of ExecFlowSDK Python package page on PyPI. .. 15
Figure 8. Use of OTEAPI in AiiDA. .. 15
Figure 9. How OTE strategies are implemented as AiiDA CalcFunctions. Here, Filter strategies are shown. 19
Figure 10. Example: Declarative OTE Pipeline. ... 20
Figure 11. Conversion from an EMMO-based ontology workflow to an AiiDA Workflow. 20

file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D3.1/OpenModel_GA_953167_WP3_D3.1-Wrapper-SDK.docx%23_Toc107500968
file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D3.1/OpenModel_GA_953167_WP3_D3.1-Wrapper-SDK.docx%23_Toc107500975

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 5 | 24

2023-01-24

LIST OF TABLES

Table 1. Different pathways and use cases for the SDK to fulfill. ... 6
Table 2. The main categories of tasks (filters) implemented in OTEAPI. .. 10
Table 3. A simple use case to motivate the SDK development. .. 12
Table 4. Generic specifications of a resource. .. 16
Table 5. Generic specifications for a mapping filter. .. 17
Table 6. Generic specifications for a filter strategy. ... 17
Table 7. Generic specifications for a transformation strategy. ... 17
Table 8. General specifications for the status of a transformation strategy. ... 18

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 6 | 24

2023-01-24

1 MOTIVATION

OpenModel will develop a body of interfaces to third-party models as described in the roadmap for implemen-
tation of wrappers and solvers and needed supporting tools for pre- and post-processors, MCO and analytics
tools described (deliverable 3.2).

The list of wrappers is long, so to realistically be able to implement and maintain these wrappers it is essential
with a good development environment and tooling for simplifying and streamlining the development and
maintenance processes. It is the first version of this tooling set that is provided in this deliverable.

2 INTRODUCTION

Table 1. Different pathways and use cases for the SDK to fulfill.

Software status Steps toward ExecFlow plugin SDK should provide

Existing AiiDA
plugin

Generate DLite/SOFT data models and
mappings for the plugin data node

Guidelines and examples

DLite/SOFT com-
patible software

Generate AiiDA plugin (data nodes, par-
ser, calcfunction)

Code generator, best practices, adapted
cookie cutter template

OSP-core wrapper Generate DLite/SOFT data models, AiiDA
plugin (data nodes, parser, calcfunction)

Guidelines and examples, code genera-
tor, best practices, adapted cookie cut-
ter template

Independent soft-
ware

Generate DLite/SOFT data models and
mappings, AiiDA plugin (data nodes, par-
ser, calcfunction)

Guidelines and examples, code genera-
tor, best practices, adapted cookie cut-
ter template

An important requirement is that we want to be able to reuse already existing wrappers implemented as (i)
traditional AiiDA plugins, (ii) as DLite/SOFT plugins or as (iii) OSP-CORE wrappers. Hence, the tooling developed
in this deliverable will focus on integrating these existing types of wrappers into the OpenModel framework.
Hence, the name Wrapper Software Development Kit (SDK) is slightly misleading. For this reason, we will here-
after refer to the tools provided in this deliverable as Ex-
ecFlowSDK.

The main objective of the ExecFlowSDK is to accelerate
the development process through best practises and
providing reusable and customizable templates and spe-
cialized tools. The ExecFlowSDK facilitates a fully seman-
tic and seamless integration of third-party tools with Ex-
ecFlow, such as external data sources, simulation tools
and other knowledge sources. Since ExecFlow is based
on AiiDA and exploits the provenance capabilities that
AiiDA, the ExecFlowSDK must facilitate storage of data
provenance as part of the plugin development (e.g., con-
figuration parameters of a transformation pipeline).

The current version of the SDK will include the following
main components:

 Integration of OTEAPI pipelines as AiiDA pro-
cesses. Figure 1. Main components of the ExecFlowSDK.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 7 | 24

2023-01-24

 Code generation for exporting AiiDA Data Nodes to DLite/SOFT data models to support semantic map-
pings.

 Workflow generator utility which, based on EMMO Workflows, can generate AiiDA workflows on-the-
fly.

The ExecFlowSDK is an expert tool for developers and enrich AiiDA workflows, processes and data with seman-
tics based on EMMO. The SDK is specialized and geared towards working with EMMC embraced technologies
for semantic representation, interoperability, and interfaces. The SDK extends the current AiiDA development
process enabling OpenModel to fully utilize the build-in provenance system.

The work carried out in this deliverable anticipates some of the design of ExecFlow that is the topic of task 4.2
lead by EPFL. So, even though mainly SINTEF have been behind the implementation of this deliverable, the de-
sign has been discussed broadly among several partners in the biweekly WP4 meetings organized by EPFL. This
mitigates the risks that the implementation in this deliverable become misaligned with contributions from
other partners in task 4.2. The ExecFlowSDK also builds on and further extend the AiiDA-CUDS integration deliv-
ered in D4.4.

3 WORK CARRIED OUT / STATUS

3.1 DESIGN PROCESS

3.1.1 CONSTRAINTS & CONSIDERATIONS
Automatic provenance tracking is one of the key features of AiiDA, which OpenModel will benefit from taking
full advantage of. AiiDA requires all internal data representations and workflow descriptions to be developed as
part of its plugin system. Once all data nodes, calculation functions, work chains and parsers are defined, AiiDA
will be able to generate the full provenance graphs during the execution of the workflows.

The benefits of using AiiDA is achieved when AiiDA is used idiomatically, i.e., the way AiiDA is designed to oper-
ate. Therefore, integrating AiiDA intimately into the OpenModel framework is the most optimal solution. This
diverts slightly from the DoA, but the gains far outweigh the disadvantages in this approach. The challenge of
OpenModel is thus how to take advantage of the provenance system, existing integrations, and features of Ai-
iDA while still incorporating semantic interoperability.

A clear alignment and integration with sister EU projects play a large role here as well. OntoTrans shows the
way forward for how to implement an Open Translation Environment (OTE). Integrating this technology in
OpenModel will dramatically improve the cross-platform interoperability as well as the intrinsic semantic in-
teroperability offered by the OTE software developed in the OntoTrans project called OTEAPI.

It is furthermore expected that other EU projects, e.g., DOME 4.0 and VIPCOAT, will implement a similar sup-
port for OTEAPI, making the OpenModel platform both competitive among its peers as well as interoperable
between themselves.

3.1.1.1 LESSONS LEARNED (AIIDA AS OTE DATA SOURCE)
The OTEAPI pipelines are typically defined as a set of processing steps starting with a data source and ending
up with a transformation/simulation step. One initial idea was to take advantage of the fact that AiiDA stores
all its data in a PostgreSQL database. Each data point stored in the database is assigned a unique identifier, al-
lowing external systems to refer to the data. By using the persistent data nodes from AiiDA as data sources it
would be possible to define specific (DLite/SOFT) data-models mapped to ontological concepts as semantic
data documentation. Using the AiiDA PostgreSQL database directly as a data source turned out to be difficult,
as the database is dependent on a local AiiDA repository filesystem. Attempts to distribute information to re-
create the local configuration violates assumptions made by AiiDA and the development team concluded that
using the AiiDA PostgreSQL databases as a shared resource was not optimal. However, AiiDA provides its own

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 8 | 24

2023-01-24

module for exposing data through a REST API. This allows specific installations of running a local web-service
that can expose contents to external users. Another option for sharing data between AiiDA installations are

through AiiDA Archives. Data and provenance graphs may be shared as artifacts on public research data re-
positories such as Materials Cloud Archive1, Zenodo2 and Open Science Framework3.

3.1.1.2 FOLLOW FUTURE DEVELOPMENT OF AIIDA
As ExecFlow is based around AiiDA, there is a strong dependency to AiiDA as a software component. AiiDA is
rapidly evolving, and the risk of having to deal with breaking changes is not unlikely. On the other hand, AiiDA
will develop new features that ExecFlow might benefit from. There are two main strategies on how to deal with
external dependencies like this. One is to freeze the dependency to a given major version (for instance v2.x).
This will ensure that ExecFlow will not break due to future changes. However, there is a risk that ExecFlow may
become obsolete due to dependencies to “legacy” software and the task of upgrading may be significant. The
other strategy is to adapt ExecFlow (and the SDK) to the latest version of AiiDA and make continuous adjust-
ments when needed. This might decrease the efficiency of the development process, or force users of
OpenModel to upgrade the system more often but ensures that ExecFlow stays relevant.

AiiDA is developing a REST API that eventually might be utilized in a way that removes the need for having local
AiiDA repositories and installations. This might be a good future option for OpenModel/ExecFlow as the work-
flow orchestrations can then be maintained as a single service and part of the OpenModel service stack.

3.1.1.3 USE OF EXISTING RESULTS FROM OTHER WORK PACKAGES
Figure 2 shows some important components that this deliverable uses and builds further on, in addition to the
OTEAPI and DLite/SOFT frameworks. Including the AiiDA CUDS in D4.4, the declarative workflow language de-
veloped in WP4 and internally at EPFL and the DLite/OSP-CORE integration developed in WP2 and in Onto-
Trans.

Figure 2. Important components of this deliverable.

3.1.2 PROVENANCE + SEMANTIC INTEROPERABILITY (AIIDA + OTEAPI)
The major benefit of using AiiDA is its integrated provenance system. A core feature of AiiDA is to keep track of
all calculations and workflows, as well as their inputs and outputs, with a meaningful linking between all of
these. OpenModel will take full advantage of this provenance and granularize its parts appropriately to ensure
a meaningful provenance can be kept of every ExecFlow run, with the proper amount of detail. This will have a

1 Materials Cloud Archive
2 Zenodo
3 Open Science Framework

AIIDA DATA NODE ->
CUDS (WP4)

DECLARATIVE WORKCHA
INS

(WP4 + EPFL INTERNAL)

DLITE <-> OSP-CORE
INTEGRATION

(WP2 + ONTOTRANS)

https://archive.materialscloud.org/
https://zenodo.org/
https://osf.io/

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 9 | 24

2023-01-24

fundamental impact on the quality of data produced by the OpenModel platform in terms of accountability,
sovereignty, licensing, and general provenance information available.

A major detraction from AiiDA is its data model rigidity and intrinsic inability to handle semantic data. This will
be mitigated by utilizing OTEAPI developed as part of the EU project OntoTrans. OTEAPI provides a framework
for handling data through data models, with support for mapping these data models to ontologies. OTEAPI al-
lows for any specific integration to specify the data models and data model system one wants to use, e.g.,
DLite/SOFT, SimPhoNy, or OSP-Core, while providing the necessary semantic interoperability between data
models and ontologies that AiiDA is lacking.

Together, these two software frameworks will become the basis for ExecFlow, allowing it to provide semantic
interoperability using one's desired data model implementation software, while keeping the stability of AiiDA
in terms of data provenance and workflow execution.

3.1.3 OTEAPI
The Ontology-based Translation Environment Application Programming Interfaces (OTEAPI) is a framework for
connecting heterogeneous data resources, semantic interoperability frameworks, open simulation platforms,
and standalone simulation tools. The OTEAPI allows for building complex use-case representations by combin-
ing a set of simple reusable functions.

Figure 3. Example of an OTEAPI pipeline.

Figure 3 presents an example of an OTEAPI pipeline. The end user, in this case a modeler running a simulation
software, needs texture data in each data representation (e.g., as pole figures) and format. He/she finds some
experimental data for the relevant alloy and condition. With OTEAPI the modeller can select the input data
source without the need of taking into consideration how the data is represented (e.g., as an orientation distri-
bution function (ODF)) and formatted. If both the data provider and modeller map their data models to a com-
mon ontology the OTEAPI can seamlessly transform the ODF data representation to the expected pole figure
data representation.

OTEAPI is an implementation of the pipe and filter architectural pattern.4 This simply describes a set of con-
nected components that process a stream of data from an input source to a receiver such as a data sink. Once a
pipeline is constructed, it is possible to execute data processing as if it were a single component. The pipeline

4 Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice: Software Architect Practice_c3.
Addison-Wesley, 2012.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 10 | 24

2023-01-24

can further be embedded in a larger workflow system. It provides a unified way to manage complex software
processing. By combining reusable elements for accessing or downloading data, parsing information, trans-
forming information, and performing business logic, the OTEAPI is highly adaptable.

A complex processing scenario is defined by constructing a "pipeline" from reusable and interchangeable parts.
OTEAPI supports the 6 main categories of tasks (aka. filters) listed in Table 2.

Table 2. The main categories of tasks (filters) implemented in OTEAPI.

Category Description

Resource Strategy

Data access (infor-
mation retrieval)

Accessing data will typically involve authorization, transportation protocols and
query languages. A simple data access module will be able to initiate a transport
protocol (for instance http) and access an artifact given a unique URL.

Parser Strategy

Syntactic Analysis

Heterogenous data sources have different syntactic ways of defining the struc-
ture and contents. Some data source will provide schemas and metadata (SQL,
HDF5), some are documented file formats (CSV, XLSX, etc.). To manage the rich
variety of formats, a parser or syntactic analyser is needed for further processing
of the data.

Mapping Strategy

Semantic Mapping

A data source associated with a semantic data model allows for semantic in-
teroperability. The semantic data model is constructed by mapping a (physical)
data model representing the business data to (logical) ontological concepts. This
can be performed by defining relations between the physical properties define in
the data model, to domain ontology concepts that can describe the meaning of
the physical quantity, the measurement technique, etc. This allows for reasoning
about data and ensuring unambiguous interpretations.

Filter Strategy

Data Filtering

Data filtering allows for extracting a subset of the available data, by defining a
view or a size limitation. The data filter is usually very closely related with the
data accessor and may include data source specific query languages.

Function Strategy

Synchronous Infor-
mation Processing

OTEAPI defines two different methods of generating new information from a
stream of data: synchronous and asynchronous processing. With synchronous in-
formation processing an operation or function will be performed, and when com-
pleted the next step in the pipeline is called.

Transformation
Strategy

Asynchronous Pro-
cessing

Asynchronous processing differs from the synchronous processing in that it will
start a process as background task and return a handle to the process. The han-
dle can be used to inspect the status of the background task. Asynchronous pro-
cessing is useful for instance when starting long-running computations.

A pipe is simply a source that consumes data by an input filter. A "filter" can be any transformation of the data
or operations that receives the stream of data from an input pipe and delivers data as a stream to an output
pipe. There can be many distinct types of filters, but in general they will share the same generic interfaces and
can in principle be connected to any pipe.

A key advantage of the pipe & filter pattern is that it allows for loose and flexible coupling of interchangeable
filters, the filters are re-usable, a set of pipelines can be run parallel. Another principal factor is that filters can
be "anything" if it honors the interface specification and is treated as "black-boxes" by the system.

A common design pattern for managing a set of (run-time) interchangeable modules with different implemen-
tations is the strategy pattern. A module will run the same named function, but the instance of the object that
is called will be changed depending on the context.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 11 | 24

2023-01-24

In the scope of the Ontology based Translation Environment, there are four main categories of operations:

 Resource operations administrates data sources and target sources. This includes downloading data
using various protocols, parsing specific file formats, interacting with web services or database man-
agement systems, generating target data and uploading information.

 Mapping between source specific metadata and general/-or domain specific semantic representa-
tions.

 Defining filtering operations that specify a subset of information .

 Transformations that operate on data and produce new information.

In the execution of a pipeline, the session object allows for sharing information between the different filters
(implemented as strategies).

Figure 4. Context-filter-session diagram showing the communication between a context class, a filter, and the session.

Figure 4 shows the context-filter-session interaction diagram, illustrating the communication between a con-
text class, a filter, and the session. The session is simply an in-memory key-value storage that is used as tem-
poral memory management in the communication between different filter types. The session data will first be
fetched into the context class and sent as argument to the filter's initialize() method. Note, the initialize
function is stateless, and its only purpose is to create an object that will be added or updated in the current
session.

3.1.4 ARCHITECTURE DESIGN FOR THE SDK
The SDK will be made up of several code modules to facilitate the creation of ExecFlow plugins. The main mod-
ules include code generation for AiiDA-specific classes (Data, Calculation, Workflow, Parser). However, another
major part of the SDK will not be code modules, but rather documentation and tutorial guidelines for how to
use the code modules, including examples based on use cases and possibly Success Stories.

3.2 DEVELOPMENT OF PARTS OF THE SDK

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 12 | 24

2023-01-24

3.2.1 USE CASES
The use cases are the core basis for developing the SDK.

Table 3. A simple use case to motivate the SDK development.

Case Thermodynamic modelling of solidification (part of SS3)

Status Description: Function that returns the phases amount and composition after the solidi-
fication of a liquid metal under normal casting conditions.

Input: Alloy chemical composition, thermodynamic database, model parameters (de-
fault values available).

Output: Phases amount and chemical composition.

Implementation: Python script calling a commercial package.

Data models: Available for alloy chemical composition and outputs.

Ontology: Microstructure domain ontology under development in EMMC Task Force,
beta version available.

AiiDA: No AiiDA plugin available for the software.

Needs Tools to facilitate building the AiiDA plugin.

Access to AiiDA Data Nodes to store and share data in external databases.

Import microstructure description from external sources (using the same data model).

Tool (or standardized format) to facilitate semantic description of the function and in-
puts/outputs.

Facilitate interoperability with software computing solid state precipitation and possi-
bly corrosion model.

SDK components AiiDA Plugin Cookiecutter.

AiiDA Data Node class generation from available data models.

Semantic mapping generation functionality.

AiiDA Calculation function or class code generation.

3.2.2 CODE GENERATORS
The ExecFlowSDK code generators are based on the Jinja5 template engine for Python. The code generators can
generate executable source code from a set of configurations and/or data models. In some use cases, there is a
need to generate AiiDA Data Nodes from existing DLite/SOFT or OSP-Core representations. The code genera-
tors will be able to generate the necessary AiiDA classes for integrating these data models in an AiiDA plugin. In
other cases, there is a need go from existing AiiDA Data Nodes to an external representation, e.g., for external
data processing or data documentation, in which case the opposite process is needed.

Constructing workflows from a declarative language, i.e., statements indicating what is to be done, contrary to
imperative statements describing how a workflow is to be constructed, is a powerful and effective paradigm.
Jinja is employed for extracting declarative statements written in JSON or YAML formatted files and producing
AiiDA workflows, specifically WorkChain Python classes, which will be a part of the AiiDA plug-in.

5 Jinja is a fast, expressive, extensible templating engine. https://jinja.palletsprojects.com/en/3.1.x/

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 13 | 24

2023-01-24

The product of the ExecFlowSDK code generators is code included in an AiiDA plugin. AiiDA plugins are gener-
ated using the AiiDA Plugins Cookiecutter6 hosted on GitHub. The generated plugin supports basic regression
tests based on pytest, includes a “Read The Docs" compliant documentation template engine, GitHub actions
to be executed as part of the CI/CD steps to run tests and check test coverage at every commit, syntax and cod-
ing style checking and setup for making the plugin pip installable (prepared for submission to PyPI). For the
OpenModel developers, the new generated or hand-written AiiDA Node classes need to be added. In addition,
the Entry Points need to be updated for AiiDA to be able to find the nodes.

In the example below in Figure 5, the code generator was used to generate an AiiDA Data Node from a
DLite/SOFT entity. The plugin was then prepared and installed. In the screenshot of the verdi shell in Fig-
ure 6 the generated Data Nodes are instantiated and stored in the AiiDA storage backend.

import yaml

from typing import TextIO

from jinja2 import Template, Environment

from s7.pydantic_models.soft7 import SOFT7Entity, SOFT7EntityPropertyType

with open('<path to entity declaratation (in yaml)>') as file:

 entity = yaml.safe_load(file)

 softEntity = SOFT7Entity(**entity)

Generate the AiiDA DataNode to be included in the AiiDA plug-in

env = Environment(

 autoescape=False,

 optimized=False)

template_file = "aiida_data_gen.txt.j2"

output_file = "aiida_exampledatanode.py"

Read jinja2 template file

with open(template_file, "r") as f:

 template = env.from_string(f.read())

Generate new AiiDA DataNode class definition.

with open(output_file, "w") as f:

 template.stream(

 class_name = 'ExampleDataNode',

 entity=softEntity).dump(f)

Figure 5. Example: Generating AiiDA Data Node from DLite/SOFT type Entities.

1 6 AiiDA plugin cutter: https://github.com/aiidateam/aiida-plugin-cutter

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 14 | 24

2023-01-24

Figure 6. Example: Using a generated AiiDA plugin to instantiate a Data Node generated from a DLite/SOFT Entities.

3.2.3 DATA MODEL TRANSFORMATIONS
The generated data model can be utilized by DLite/SOFT or OSP-CORE, for the latter an (EMMO-based) ontol-
ogy and a mapping are required to generate the CUDS. DLite/SOFT data models also need mappings to EMMO
ontologies for full semantic interoperability.

3.2.4 DECLARATIVE WORKCHAINS (AIIDA)
A specification of the AiiDA workflows (called WorkChains) can be described using simple statements in a text
file (does not require programming). The wrapper SDK includes the AiiDA workflow generator for rapid
onboarding of external simulation tools. The workflow generator is based on the ontological workflow repre-
sentation (described by EMMO Workflows middle level ontology in WP1), from which the declarative Work-
Chain description eventually will be generated from. The generator will be able to generate AiiDA Workflows
on-the-fly and will support composing workflows from already existing AiiDA workflows, completely new ele-
ments, or a hybrid. The declarative WorkChain description is crucial for the whole OpenModel it is outside the
scope of deliverable D3.1 as WorkChains are part of WP4.

3.2.5 CI/CD FOR PYTHON PACKAGE CREATION AND DEPLOYMENT
As described in D2.1 – OpenModel Agile Manifesto, CI/CD systems are of high importance already at early
stages of development to ensure good and continuous progress.

A first (empty) release of the package has already been published on PyPI (see Figure 7) and automatic deploy-
ment for further releases has been set up to ensure streamlined flow of updates to the users. The code is setup
such that releases will be automatically pushed to PYPI, which is a python package service and allows develop-
ers to install the SDK using the python package installer called pip.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 15 | 24

2023-01-24

Figure 7. View of ExecFlowSDK Python package page on PyPI.

3.2.6 OTEAPI ADOPTION FOR AIIDA
The AiiDA OTEAPI pipeline plugin implement a semantic ETL (Extract, Transform, Load) system for integrating
or ingesting data from heterogeneous data source into AiiDA. OTEAPI pipelines consist of connectors to hetero-
geneous data sources and ontology-mapped data models which allows external representations to connect to
native AiiDA Data Nodes through semantic interoperability. The plugin allows running OTEAPI pipelines natively
within AiiDA. This will ensure a close and direct interoperability with knowledge sources within external plat-
forms such as OntoTrans, MarketPlace, DOME 4.0, VIMMP and VIPCOAT.

The OTEAPI Integration for AiiDA involves

 Strategy Configurations as Data Nodes

 Strategies as CalcFunctions

Figure 8. Use of OTEAPI in AiiDA.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 16 | 24

2023-01-24

 Pipelines as WorkChains

And is further detailed in the following subsections.

3.2.6.1 STRATEGY CONFIGURATIONS
The data resource configuration specifies an external information resource. The resource can either be a ser-
vice (query endpoint, REST API, ODBC, etc.), or a static data file that can be retrieved. If the downloadUrl

and a mediaType is specified, then OTEAPI can reason about the proper download protocol and deserializa-

tion of the information. If an accessService is specified, then OTEAPI will need to provide a specialized
plugin for the particular service.

Table 4. Generic specifications of a resource.

Property Type Description

downloadUrl string

Definition: The URL of the downloadable file in a given

format. E.g., CSV file or RDF file. Usage: downloadURL

SHOULD be used for the URL at which this distribution

is available directly, typically through a HTTPS GET re-

quest or SFTP.

mediaType string

The media type of the distribution as defined by IANA

[IANA-MEDIA-TYPES]. Usage: This property SHOULD

be used when the media type of the distribution is de-

fined in IANA [IANA-MEDIA-TYPES].

accessUrl string

A URL of the resource that gives access to a distribu-

tion of the dataset. E.g. landing page, feed, SPARQL

endpoint. Usage: accessURL SHOULD be used for

the URL of a service or location that can provide access

to this distribution, typically through a Web form,

query or API call. downloadURL is preferred for di-

rect links to downloadable resources.

accessService string
A data service that gives access to the distribution of

the dataset.

license string
A legal document under which the distribution is made

available.

accessRights string
A rights statement that concerns how the distribution

is accessed.

description string A free-text account of the distribution.

publisher string
The entity responsible for making the resource/item

available.

configuration object
Resource-specific configuration options given as

key/value-pairs.

The configuration can include a reference to the DataCache. The DataCache is an internal storage mechanism
that allows for temporarily storing artifacts for an active period to avoid the need to access the same resource
multiple times over the network.

Mapping operations

Mapping allows for extending the data documentation with relations to knowledge concepts defined in ontolo-
gies or vocabularies. When using DLite/SOFT, the mappings are defined between data model properties to

https://www.w3.org/TR/vocab-dcat-2/#bib-iana-media-types
https://www.w3.org/TR/vocab-dcat-2/#bib-iana-media-types

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 17 | 24

2023-01-24

EMMO based domain ontologies or other knowledge base concepts. Mappings are usually expressed using tri-
ples, or knowledge statements, defining the explicit relation between one concept and another. The mappings
ontology <https://github.com/emmo-repo/domain-mappings> is the preferred choice.

Table 5. Generic specifications for a mapping filter.

Property Type Description

mappingType string
Type of registered mapping strat-

egy. E.g., mapping/demo.

prefixes object

List of shortnames that expands to

an IRI given as local value/IRI-ex-

pansion-pairs.

triples array
List of semantic triples given as

(subject, predicate, object).

configuration object
Mapping-specific configuration

options given as key/value-pairs.

Filtering operations

Often the data source contains more data than needed, and there is a need to extract a specific piece of infor-
mation. Filters define a particular view into a subset of the data. Filters define either constraints or express a
specific query.

Table 6. Generic specifications for a filter strategy.

Property Type Description

filterType string
Type of registered filter strategy.

E.g., filter/sql.

query string Define a query operation.

condition string
Logical statement indicating when

a filter should be applied.

limit integer
Number of items remaining after a

filter expression.

configuration object
Filter-specific configuration op-

tions given as key/value-pairs.

Transformations

Transformations are asynchronous processes used to run simulations or any background job. Since transfor-
mations can take an arbitrary amount of time, they are not expected to return results further down a pipeline.

Table 7. Generic specifications for a transformation strategy.

Property Type Description

transformation_type string
Type of registered transformation

strategy. E.g., celery/remote.

name string
Human-readable name of the

transformation strategy.

description string
A free-text account of the transfor-

mation.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 18 | 24

2023-01-24

due string

Optional field to indicate a due

data/time for when a transfor-

mation should finish.

priority enum
Define the process priority of the

transformation execution.

secret string
Authorization secret given when

running a transformation.

configuration object

Transformation-specific configura-

tion options given as key/value-

pairs.

Transformation status

Since the transformations does not return a response when the task is finished, a client needs to use the API to
(regularly) check the status of a running job. The transformation status model describes the expected payload
sent from the OTEAPI and back to the client.

Table 8. General specifications for the status of a transformation strategy.

Property Type Description

id string
ID for the given transformation

process.

status string
Status for the transformation pro-

cess.

messages array
Messages related to the transfor-

mation process.

created string
Time of creation for the transfor-

mation process. Given in UTC.

startTime string
Time when the transformation

process started. Given in UTC.

finishTime string
Time when the transformation

process finished. Given in UTC.

3.2.6.2 STRATEGIES AS CALCFUNCTIONS

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 19 | 24

2023-01-24

Figure 9. How OTE strategies are implemented as AiiDA CalcFunctions. Here, Filter strategies are shown.

3.2.6.3 DECLARATIVE PIPELINES (OTEAPI)
Data pipelines are constructed connecting data sources to a set of processing steps, where the output from
one step is the input to the next. In OTEAPI, the pipelines are constructed connecting a sequence of strategies
which can be individually configured. A declarative way of expressing the OTEAPI pipeline is shown in the fol-
lowing figure, where YAML is used for defining the declarative pipeline.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 20 | 24

2023-01-24

version: "1"

strategy:

 - dataresource: mydata_resource

 downloadUrl: "http://example.com/resource/image.jpg"

 mediaType: image/jpeg

 - mapping: mymapping

 mappingType: mapping/demo

 - transformation: mytrans

 transformation_type: script/dummy

pipeline:

 mypipe: [mydata_resource | mymapping | mytrans]

Figure 10. Example: Declarative OTE Pipeline.

Each element in the list of strategies with configurations is used to instantiate each strategy programmatically.
The pipeline orchestration can either be generated specific AiiDA WorkChains. In addition, a more generic ap-
proach where the declarative pipeline is encoded as an AiiDA Data Node and interpreted by a generic Work-
Chain class.

4 NEXT STEPS

4.1 FULL USE CASE DEMONSTRATION

In order to provide tests of the OpenModel tools before the success stories have their modelling workflows in
place, both DCS and GCL have kindly provided already working use cases that during the next months will be
used for a first end-to-end testing of the demonstration of the ExecFlowSDK.

4.2 WORKFLOW ONTOLOGY

Figure 11. Conversion from an EMMO-based ontology workflow to an AiiDA Workflow.

The wrapper SDK will include the AiiDA workflow generator for rapid onboarding of external simulation tools.
The workflow generator is based on the ontological workflow representation described by EMMO Workflows
Midlevel ontology, as described in WP1. The generator will be able to generate AiiDA Workflows on-the-fly and
will support composing workflows from already existing AiiDA workflows, completely new elements, or a hy-
brid.

4.3 DOCUMENTATION

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 21 | 24

2023-01-24

Guidelines for writing an OpenModel ExecFlow Plugin will be added.

5 CONCLUSION

The ExecFlow SDK is accelerating the development of AiiDA plugins for the execution of semantic workflows
with full provenance support.

The scope of D3.1 has evolved to take full advantage of AiiDA and integrate more closely with the Translation
Services using the same standard interfaces and semantic interoperability platforms.

The software ecosystem is a collaborative effort between related EU projects. The OTEAPI is incorporated in
OpenModel as a joint effort between the projects OntoTrans, VIPCOAT and OpenModel.

6 APPENDIX

6.1 NOMENCLATURE

 Adapter pattern is a software design pattern that allows to reuse existing (external) resources, the
adaptee, that does not conform to the OntoTrans REST API by defining a separate adapter that pro-
vides it with a conforming REST API.

 AiiDA an open-source Python infrastructure to help researchers with automating, managing, persist-
ing, sharing, and reproducing the complex workflows.

 API – application programming interface – is a software interface that allows applications to talk to
each other.

 APP is the software module of the OTE (one for each Innovation Challenge) used to declare the com-
ponents of a specific User Case, to build the workflow by selecting available solutions (e.g., models,
database, other cases data, machine learning approaches) and to connect the available tools together
(passive or active).

 Authentication a process of verifying the identity of a person (or thing).

 Authorisation the controlling of access rights to resources (access policy).

 BDSS - business decision support system is a tool for aiding decision-making.

 Container is an isolation of software package of applications and dependencies, allowing for reproduc-
ibility and simplify deployment.

 Conversion is a special filter that converts data from one representation to another.

 CRUD read, write, update, and delete - the basic operations for persistent storages.

 CSV – Comma-separated values is a simple file format used to store tabular data, such as a spread-
sheet or database. The actual column separator and decimal point may depend on application and lo-
cation.

 CUDS - Common Universal Data Structures is the ontology compliant data format of OSP-core. A
CUDS is at the same time an ontological individual, an API, a container, RDF, and a node in a graph.

 Dataresource [in OntoTrans interface API] refers to the location of a piece of data. It can either be a

data source or a data sink.

 DataSpace is a metadata storage for the Semantic Data Models, which are data models describing the
low-level representation of a dataset.

 Data sink is something that designed to receive data.

 Data source is anything which produces digital information, from the perspective of systems which
consume this information.

 DBMS – database management system is a software package designed to define, manipulate, re-
trieve, and manage data in a database. A DBMS generally manipulates the data itself, the data format,
field names, record structure and file structure. It also defines rules to validate and manipulate this
data.

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 22 | 24

2023-01-24

 DevOps is a methodology that merges the disciplines of software development (dev) and operations
(ops).

 DLite is a MIT-licensed data-centric interoperability framework for working with scientific data. Data is
described with simple, yet flexible data models. DLite is written in C, with bindings to Python and
Fortran. It is available at https://github.com/SINTEF.

 Docker is a technology that enables containerization of applications and dependencies and provide a
portable standardized execution environment.

 Filter [in pipes and filter pattern] represent and algorithm to be performed on a specific type of data.
It typically receives input from a pipe and delivers processed information to another pipe but may also
read from a data source or write a data sink.

 GUI – graphical user interface – is a type of user interface that allows users to interact with and appli-
cation through graphical elements.

 Interface the signature (codes and messages) of a set of software methods that allows for communica-
tion between different software elements.

 JSON is a popular specific file format for expressing information in terms of data objects expressed as
attribute-value statements and collections of data objects.

 Knowledge base a technology used to store complex unstructured information. The OpenModel
knowledge base is implemented in OntoFlowKB.

 Kubernetes is a platform for managing and automating container orchestration. See Container.

 Mapping (in the OTEAPI) is a special type of filter that maps data, typically read from a data source to

concepts in an ontology.

 MCO - multicriteria optimisation is mathematical optimisation involving more than one objective func-
tion to be optimised simultaneously.

 MCDM - multicriteria decision making is decision-making based on MCO.

 MODA – materials MOdelling DAta – provides a systematic description and documentation of simula-
tions including the user case, model, solver, and post-processor. It seeks to organize the information
so that even complex simulation workflows can be conveyed more easily and key data about the mod-
els, solvers and post-processors and their implementation can be captured. EMMC provides MODA
templates for physics-based modelling workflows.

 OAuth2.0 is an industry standard protocol for authorization.

 OntoFlow a core component of OpenModel that provide workflow specifications based on technical
and business requirements.

 OntoFlowKB is the OpenModel knowledge base implemented as a triple store.

 MoDS – CMCL’s Model Development Suite is a set of tools for generation of surrogate models, multi-
objective optimisation, uncertainty propagation, classification/clustering.

 OpenAPI is a standard for self-documenting REST APIs that allow both humans and computers to dis-
cover and understand the capabilities of the service.

 OntoKB is the OntoTrans knowledge base implemented as a triple store.

 OntoRec is an ontology-based recommender system in OntoTrans.

 OpenID Connect extends the OAuth 2.0 authorization framework with an authentication layer.

 OpenModelDS is a data service that will store the (potentially big) data needed by the MCO/ML algo-
rithms. It is used by OpenModelDM.

 OpenModelDM is a collection of decision-making tools build on top of the MCO & BDSS Services.

 OSP – Open Simulation Platform. Allow for building an ecosystem of models and resources.

 OSP-Core is an OSP implementation originally developed in the SimPhoNy project and used in several
other projects, like MarketPlace.

 OTE – Open Translation Environment – is a platform that provides search, decision mechanisms, tools
to link models and databases, tools to link translators with modellers and industry and tools to share
best practices.

 Payload is the part of transmitted data that is the actual intended message. Headers and metadata
are sent only to enable payload delivery. In OntoTrans

 Pipe [in pipes and filters pattern] is a software component represent data with a type and connects
the output from one filter into the input of another filter.

https://github.com/SINTEF

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 23 | 24

2023-01-24

 Pipeline is a series of processes, usually linear, which filter or transform data. Pipelines are normally
quick, and the data flow does not normally loop. The first process takes raw data as input, does some-
thing to it, then sends its results to the second process, and so on, eventually ending with the final re-
sult being produced by the last process in the pipeline. Branching is possible. The processes may be
running concurrently (using streams).

 Pipes and filters pattern is a software design pattern that decompose a task that performs complex
processing into a series of separate elements that can be reused.

 Proxy a proxy server acts as an intermediary between a client and a resource.

 PostgreSQL is an Open Source, SQL compliant, relational database management system

 REST API is used to describe a web service that allows different computer systems to communicate
over HTTP.

 SFTP – SSH File Transfer Protocol is a secure file transfer protocol. It runs over the SSH protocol. It
supports the full security and authentication functionality of SSH.

 SimPhoNy - An EU project as well as the native implementation of the core CUDS object and class gen-
eration for OSP-core.

 SOFT - SINTEF Open Framework and Tools is a set of concepts and tools for interoperability. Several
implementations exist, of which SOFT7 is the development version where new ideas are tested out
while DLite is more a working horse. The code base It is available at https://github.com/SINTEF/soft7.

 SQL – Structured Query Language – is a standard language for communicate with relational data-
bases.

 SQLite is a library that implements a light-weight self-contained SQL database engine. The database is
a file on the local file system.

 SSH – Secure Shell is a cryptographic network protocol for operating network services securely over
an unsecured network.

 Strategy pattern is a software design pattern that enables selecting an algorithm at runtime.

 Transformation [in OntoTrans interface API] are processes that create new knowledge or data. This

includes both numerical models/machine learning and things like post processing.

 Verification is the process that determines the quality of the software. In short it is about meeting the
specifications.

 Validation is the process that determines whether the software meets the expectations, which is a
much more subjective than verification.

 V&V - verification and validation. The combination of verification and validation.

 Workflow is a set of processes, generally non-linear, which filter or transform data, possible triggering
external events. The processes are not assumed to be running concurrently. The data flow diagram
can branch or loop and there may not be any clearly defined "first" or "final" process. Workflows can
be complex and long-lived and may involve human interactions. They can be expressed using MODA
(or MODA-like) graphs representing the combination of methods for the prediction of properties of
our objects/processes of interests (the totality or part of the user case).

 WorkflowDesigner is a tool that will use OpenModelDM to optimise ontological workflow descriptions
by taking technical and business requirements into account.

 WorkflowBuilder is a component of OntoFlow that can compile the ontological workflow descriptions
from the WorkflowDesigner to a format understood by ExecFlow.

 Wrapper is defined as an entity that encapsulates and hides the underlying complexity of another en-
tity by means of well-defined interfaces.

https://github.com/SINTEF/soft7

D3.1: Wrapper-SDK © OpenModel Consortium CONFIDENTIAL 24 | 24

2023-01-24

7 ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may
contain information subject to intellectual property rights. No intellectual property rights are granted by the
delivery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the au-
thor(s).

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the
information and views expressed herein lies entirely with the author(s).

All rights reserved.

