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D3.4 – SIMULATION PRE/POST- PRO-

CESSING WRAPPERS  

1 INTRODUCTION  

 

To be executed in the OpenModel platform, a software requires a wrapper. A wrapper, as the name suggests, 

operates by wrapping around the software, handling its required inputs and produced outputs and converting 

those to a common, ontologically described dataset. Wrappers for the software to be utilized in the 

OpenModel platform are created using the ExecFlowSDK, whose schematic is outlined in Figure 1 and detailed 

in D3.1. However, please note that since the D3.1 report, the ExecFlowSDK has been refactored and integrated 

into ExecFlow. 

 

Figure 1: ExecFlow structure (from D3.1). 

 

To be executed on the OpenModel platform, all success stories, and indeed any workflow, need to complete 

the requirements below: 

1. Data documentation (Documentation of the input). 

2. Workflow description using the declarative workchain. 

3. Parsing of the output before storing into the database (Documentation of the output). 
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A common modelling workflow relies on one or more modelling software to execute the main modelling tasks. 

This usually requires some sort of pre-processed data for execution, e.g. as geometry files, meshes, etc, which 

frequently requires a dedicated pre-processing software to generate. Similarly, the raw output requires post-

processing for visualization and analysis, a task which often employs dedicated post-processing software.  

As stated above, each of these steps requires a wrapper to operate within OpenModel. A detailed description 

of modelling wrappers was provided in D3.3, but in summary, the wrapper for a modelling software semanti-

cally describes its inputs and outputs. Pre- and post-processing wrappers in the OpenModel OIP are a formal 

description of a pre- or post-processing software, including what input it takes, what output it provides and 

how it is executed together with a set of plugins for generating the input from a standardised internal repre-

sentation and parsing the output to the standardised internal representation. The structures of pre- and post-

processing wrappers are illustrated in Figure 2 and Figure 3, respectively. 

 

 

Figure 2: A pre-processing wrapper in OpenModel. The blue boxes represent the executable components, the generators that generates 

the pre-processor input, the pre-processor itself, and the parsers that parse the pre-processor output. The yellow box represents data 

models that describe the input. The input data instances are described by the corresponding data models but are not part of the wrap-

per itself. 

 

 

 

Figure 3: A post-processing wrapper in OpenModel. The blue boxes represent the executable components, the generators that gener-

ates the post-processor output, the post-processor itself, and the parsers that parse the post-processor output. The yellow box repre-

sents data models that describe the output. The input data instances are described by the corresponding data models but are not part 

of the wrapper itself. 
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DLite1 is used to support data documentation and semantic mappings effectively. As a result, the datasets in 

OpenModel are described in a manner consistent with DLite data models (also called entities). This ensures a 

standardized and coherent representation of the data across all software used in the Success Stories and facili-

tates seamless integration within the OpenModel platform. 

The basic requirements are:  

• uri: Uniform Resource Identifier uniquely identifying the data model 

• description: Describe the data being documented (see Figure 4). 

• dimensions: Dimensions (i.e number of element) of the data.  

• properties: All the properties associated with the data being documented. 

    "uri": "http://openmodel.eu/meta/0.1/MoltemplateInputPhysicalProperties", 

    "description": "Entity describing input variables for the simulation", 

    "dimensions": { 

        "nrows": "Number of elements (i.e. number or rows)." 

    }, 

    "properties": { 

        "temperature": { 

            "type": "float", 

            "shape": ["nrows"], 

            "description": "Temperature" 

        }, 

        "pressure": { 

            "type": "float", 

            "shape": ["nrows"], 

            "description": "Pressure." 

        } 

    }  

Figure 4: Example of data documentation. From the ExecFlow Demo presented in the Second Open OntoTrans Workshop in Bremen, 

Sep. 7, 2023. 

 

1.1 SUCCESS STORIES 

This section outlines the contributions from each Success Story to this deliverable. For this deliverable, contribu-

tions are provided from Success Stories 1, 2, 3, and 6, which rely on pre- and post-processing software that fit 

the description of this task. These will be detailed in the subsections below. The remaining Success Stories, 

namely 4, and 5, are not included in this report, but will be further elaborated on in deliverables D3.3, D3.7 and 

D3.6, respectively. The rationale is also outlined below.  

The intent is that the combined work from the Success Stories will demonstrate all the capabilities of 

the platform. Figure 5 shows an overview of features required by the different pre- and post-processing wrappers 

and the OpenModel component responsible for providing that feature. It also connects the wrappers to the 

success stories where they are used.  

 
1A light-weight data-centric framework for semantic interoperability; https://github.com/SINTEF/DLite  

https://github.com/H2020-OpenModel/ExecFlowDemo/tree/main/meso_multi_sim_demo/case_aiida_shell
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Figure 5: Overview over some selected features of the OpenModel OIP and what wrappers that requires them in what Success Story. 

The components that provide the selected features are also included. 

1.1.1 SUCCESS STORY [1] – SYNAPTIC ELECTRONICS: FROM MATERIALS PROPERTIES TO 

NEXT-GENERATION MEMORY DEVICES (CNR, AMAT)  

 

The Success story 1 (SS1) is based on the Applied Materials proprietary modelling and simulation software 

Ginestra®. The ability of the OpenModel platform to run workflows based on Ginestra® enables the user to im-

prove device design and material exploration, linking the material properties to electrical device performances 

for synaptic electronics, and in general for all semiconductor applications. In the D3.3 it was described the mod-

elling workflows of two fundamental material parameters: the band gap and the effective mass. In this delivera-

ble we describe the development of Ginestra® to make it compliant with the OpenModel platform, together with 

the required pre-processing and post-processing wrappers for SS1. A schematic overview of the SS1 workflow is 

shown in Figure 6. 
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Figure 6: SS1 Workflow overview 

 

 

GINESTRA® AS A BLACK BOX: 

Ginestra® is a stand-alone TCAD software that, thanks to its graphical user interface (GUI), permits to simulate 

electronic devices. Everything is done by means of the GUI, and the typical workflow is: 

1. Device design 

2. Electrical test definition 

3. Simulation execution 

4. Output data view and analysis. 

As it is, Ginestra® is a close environment, not compatible with the OpenModel platform. To enable the interop-

erability with an external software, a new working condition, called Ginestra® as a black box (Gbb), has been 

developed. 

The purpose of Gbb is to execute simulations on a pre-defined device and test, allowing the specification of some 

input parameters (geometrical or material properties) from an external dataset, as well as the retrieval of the 

output electrical characteristics. 

This definition of Gbb makes it compatible with workflow automation. It allows to define a specific electrical test 

that can be integrated in a workflow that explores different configurations and materials, analyses the device 

performance, and identifies the best solutions. This corresponds exactly to the design of experiment (DoE) pro-

cess widely applied in the R&D studies of the electrical industry. 
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• Points 1 and 2 are complex tasks that still require the assistance of the GUI. They define the simulation, 

the dataset of input parameters and its outputs. In the GUI, these info are made available to Gbb by a 

new button called “Store configuration”. It saves all the input files in a simulation folder and defines the 

subset of the output data to be exported in a text file during Point 4. 

 

Figure 7: Gbb GUI 

 

• Point 3 has been decoupled from the GUI. In Gbb the simulation can be executed from the command 

line by the User or from an external driver as AiiDA. The dataset of the input parameters defined at 

Point 1,2 is exposed to the command line execution, as described later, and they can be defined or 

modified by the User/driver. 

• Point 4 Gbb stores, in addition to the proprietary Ginestra® output that can only be visualized within 

the GUI, the selected electrical characteristics. They are saved in a text format that can be easily ac-

cessed or imported in other data analysis software. 

This new structure (Gbb) has been used to integrate Ginestra® within OpenModel and to develop the workflow 

of SS1 described in the following. 

 

WORKFLOW SS1 

More In details, these are the steps and key components/parameters we are going to describe in the following 

paragraphs. 



 

 

WP3- D3.4- SIMULATION 
PRE/POST-PROCESSING 
WRAPPERS 

© OpenModel Consortium 1 14 | 57 

 

 

2023-12-24 

 

Figure 8: SS1 Ginestra simulation flow 

Step 1: SIMULATION FILE PREPARATION. 

The simulation input dataset of in Ginestra has two main components: the device structure and the electrical 

test. Both should be defined by the User through the Ginestra graphical user interface (GUI). 

Device structure creation. 

A User can design, by means of the GUI integrated geometry creator, the structure of complex electronic devices, 

defining several parameters like the shape and dimensions of the regions that compose the device, their number, 

their material etc. In addition, Ginestra offers an extensive library of standard structures (e.g. MIM, MOSFET, 

FinFET, GAA), that are stored in predefined “Template” geometries and can be shaped by the User (see Figure 

8).   
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Figure 9: Ginestra GUI- new device from standard template library 

The User can also import structures and meshes created by external mesh generators like GMSH 

[https://gmsh.info/]. 

Electrical test definition. 

Once the device has been created, the User can define the electrical tests to be simulated. The test describes the 

working conditions of the device e.g., the applied electric signal, and the properties and output data to be com-

puted.  For the electrical tests also, it has been developed a library of predefined “Test Simulation” that can be 

modified by the User, as well as the possibility to define a test from scratch. 

In SS1 we will run an IV test on a MOSFET. A current–voltage characteristic (or I–V) curve is a relationship, typically 

represented as a chart or graph, between the electric current through a device, and the corresponding voltage 

applied at its electrodes. In SS1 it will be computed the current at the drain contact of the MOSFET as function 

of the voltage difference between the drain and the source contacts. 

https://gmsh.info/
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Figure 10: Ginestra GUI- New test creation 

Step 2: INPUT PRE-PROCESSING. 

After preparing the Simulation files in the Ginestra GUI, during the second step, the pre-processing wrapper will   

collect the following inputs: 

Ginestra files 

• ginestra-core-sim.exe: the executable file of Ginestra Simulation Software which execute the simula-

tion. In our SS1 we will process the Band Gap and Effective Mass which can be retrieved by the work-

flows defined in D.3.3 and evaluate the IV characteristics of a MOSFET. 

• ginestra.lic: the license file necessary to run the Ginestra product. Ginestra is a commercial product 

own by Applied Materials. 

• input.ini: a file that is automatically generated by Ginestra GUI at the end of Step 1. 

• input_parameter.ini: a file specifying the material properties in different regions of the device. 

Simulation files automatically generated by the Ginestra GUI at the end of Step 1 

• device.xml: the file that describes the electrical device. It is automatically generated by Ginestra GUI at 

the end of Step 1. 

• state.xdf5: the file that describes the initial state of the device. As an example, a memory cell may be 

in the fresh state (i.e. not programmed), or it can be programmed in its high or low resistance state. 

The file is automatically generated by Ginestra GUI at the end of Step 1. 

• test.xml: the file that describes the electrical test. It is automatically generated by Ginestra GUI at the 

end of Step 1. 

• input.ini: a file that collects the paths to the device.xml, state.hdf5 and test.xml input files of the simu-

lation, as well as to its output files. 
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Input dataset that can be set and modified by the User through Openmodel 

• ID Region: identifier of the region where the user specific materials properties like the band gap and 

effective mass.    

• Band Gap: key parameter to distinguishes metals from semiconductor and insulators and provides in-

formation about the electronic response of the material to external influences. It will be provided by 

the workflow described in the D3.3 

• Effective Mass: core parameter needed to calculate the carrier density and density of states in semi-

conductors under the approximation of parabolic band dispersion. It will be provided by the workflow 

described in the D3.3 as well. 

• Output Path: the path to the output file where the electrical characteristic is saved. In SS1 it is the I-V 

curve stored in a tab-separated values (TSV) text file. 

 

Step 3: SIMULATION EXECUTION 

If the input files are correctly prepared, the simulation can be computed by the Ginestra core simulation engine. 

The execution does not require the GUI and can be run in a terminal with the following command line: 

ginestra-core-sim.exe -l “ginestra.lic” -i “input.ini” -p “input_parameter.ini” 

The files ginestra-core-sim.exe, ginestra.lic and input.ini, have already been described and are directly available 

from the database. The file input_parameter.ini instead collects the parameters ID Region, Band Gap and Effec-

tive mass, and it is generated by the wrapper in the pre-processing phase. 

 

Step 4: OUTPUT POST PROCESSING 

The output generated by the Ginestra simulation engine can be post processed following two different ap-

proaches: 

- .hdf5 format: the Hierarchical Data Format version 5 (HDF5), is an open source file format that supports 

large, complex, heterogeneous data. HDF5 uses a "file directory" like structure that allows the user to 

organize data within the file in many different structured ways, as the user might do with files on user 

workstation. Using this format the output can be postprocessed in the Ginestra GUI. 

- .tsv format: a tab-separated values (TSV) file is a text format whose primary function is to store data in 

a table structure where each record in the table is recorded as one line of the text file. This  format is 

documented in the OPENMODEL project in order to make the resulting data FAIR. 

1.1.1.1 PREPROCESSING WRAPPER: GINESTRA WRAPPER 

In this paragraph we will describe in detail the workflow of the pre-processing wrapper. Figure 11 shows the 

main wrapper actions: 
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1) PARAMETER DATA PROCESSING: in this first step, the 3 key parameter data (ID Region, Band Gap and 

Effective mass), that can be obtained from the existing data on the database o computed as a result of 

the modeling workflow described in D3.3, are combined by the wrapper in a unique file called in-

put_parameter.ini 

2) INPUT COLLECTION: the files input.ini and input_parameters.ini are copied to the execution folder. In 

the same folder, it is created a subfolder named Inputs where they are imported the files device.xml, 

state.hdf5 and test.xml. In the same execution folder it is created the Output folder where the 

Ginestra simulation outputs will be collected. 

3) SIMULATION RUN: the wrapper launch the simulation calling the ginestra-core-sim.exe engine. 

 

Figure 11: Pre-processing wrapper flow 

 

1.1.1.1.1 DATA DOCUMENTATION 

JSON (JavaScript Object Notation) is defined as a file format used in object-oriented programming that uses hu-

man-readable language, text, and syntax to store and communicate data objects between applications. In this 

paragraph we document the json input file for facilitating the data flow between OpenModel OIP and a simula-

tion workflow: 

{ 
  "uri": "http://ontotrans.eu/meta/0.1/ginestraSimulationInput", 
  "description": "Entity for the simulation of an electrical device.", 
  "dimensions": [], 
  "properties": { 
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        "executable": { 
            "type": "str", 
            "description": "Path to the Ginestra executable file." 
        }, 
        "licence": { 
            "type": "str", 
            "description": "Path to the Ginestra licence file." 
        }, 
        "g_input": { 
            "type": "str", 
            "description": "Path to the Ginestra simulation input.ini file." 
        }, 
        "id_region": { 
            "type": "int", 
            "description": "Identifier of the device region whose material parameters are 
set by the wrapper." 
        }, 
        "bandgap": { 
            "type": "float", 
            "unit": "eV", 
            "description": "The material energy band gap." 
        }, 
        "effective_mass": { 
            "type": "float", 
            "unit": "m0", 
            "description": "The density of states effective mass of the conduction band, in 
units of the electron mass m0." 
        }, 
        "output": { 
            "type": "string", 
            "description": "Path to the output .tsv file." 
        }, 
        "m_n_machines": { 
            "type": "int", 
            "description": "Number of computer nodes." 
        }, 
        "m_n_mpiprocs_pm": { 
            "type": "int", 
            "description": "Number of MPI processes per node."    } 
  } 
} 

1.1.1.1.1.1 INPUT 

The input file for enabling the Ginestra simulation are listed in the following table: 

Table 1: SS1 Input files 

Name 
Description Type 

Default 
values 

Available op-
tions 

Units 

licence Path to the license file string N/A N/A N/A 

executable Path to the executable file string N/A N/A N/A 

input 
Path to the simulation in-
put.ini file 

string N/A N/A N/A 
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device Path to the device.xml file string N/A N/A N/A 

state Path to the state.hdf5 file string N/A N/A N/A 

test Path to the test.xml file string N/A N/A N/A 

id_region 

Identifier of the device re-
gion where the bandgap 
and effective_mass param-
eters are provided 

int 1 

[0:N) 

N: number of  
device regions 

Adim. 

bandgap 
Energy difference between 
the valence and conduction 
bands 

float 1.16 [0.0:15.0] eV 

effective_mass 
Effective mass that allow to 
describe the band carriers 
as a free-particle model 

float 1 [0:3] 

Units of 
the elec-
tron mass 
(m0) 

output Path to the output TSV file string N/A N/A N/A 

m_n_machines Number of computer nodes int 1 N/A N/A 

m_n_mpiprocs_pm 
Number of MPI processes 
per node. 

int 1 N/A N/A 

The YAML file with the wrapper for executing Ginestra in AiiDA follows: 

# First implementation of the Ginestra task for computing I-V curves. 

--- 

steps: 

  # Reading the input dataset for Ginestra BB.  

  - workflow: execflow.oteapipipeline 

    inputs: 

      pipeline: 

        $ref: file:pipeline_device1.yaml 

      from_cuds: 

        - ginestra 

        - input_parameters 

    postprocess: 

      - "{{ ctx.current.outputs.results['ginestra']|to_ctx('ginestra') }}" 

      - "{{ ctx.current.outputs.results['input_parameters']|to_ctx('input_parameters') }}" 

 

  - workflow: execflow.exec_wrapper 

    inputs: 

      shelljob: 

        metadata: 

          options: 

            resources: 

              num_machines: "{{ ctx.ginestra.m_n_machines }}" 

              num_mpiprocs_per_machine: "{{ ctx.ginestra.m_n_mpiprocs_pm }}" 

file:///C:/Users/vlunardelli164906/AppData/Local/Microsoft/Windows/pipeline_device1.yaml
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      command: "{{ ctx.ginestra.executable }}" 

      arguments: 

        - "-l" 

        - "{{ ctx.ginestra.licence }}" 

        - "-i" 

        - "{{ ctx.ginestra.g_input }}" 

        - "-p" 

        - "{parameters}" 

      files: 

        parameters:  

          filename: "input_parameters.in"  

          node: "{{ ctx.input_parameters }}" 

      outputs: 

        - test.log 

    postprocess: 

      - "{{ ctx.current.outputs['test_log']|to_ctx('ginestra_output') }} 

... 

1.1.1.1.1.2 OUTPUT 

As mentioned above, in the SS1 the main output is the I-V characteristic, which defines the device operation 

within an electrical circuit. As its name suggests, it shows the relationship between the current flowing through 

the device and the applied voltage across its terminals. 

Below an example of I-V curves plotted in Ginestra. 

 

Figure 12: Ginestra GUI I-V output postprocessing 

The user can choose different file format to post-process the I-V output: 
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- .hdf5: this is the standard format that is used by Ginestra to store the simulation outputs. HDF5 is a 

general purpose library and file format for storing scientific data. HDF5 is a data model, library, and file 

format for storing and managing data. It supports an unlimited variety of datatypes, and is designed for 

flexible and efficient I/O and for high volume and complex data. HDF5 is portable and is extensible, 

allowing applications to evolve in their use of HDF5. The HDF5 Technology suite includes tools and ap-

plications for managing, manipulating, viewing, and analyzing data in the HDF5 format. In general, the 

HDF5 method significantly outperforms the CSV method on write speed, read speed, and storage size. 

The best performance in terms of timing occurs for the largest array size of 20,000,000 elements, where 

the write and read times for HDF5 are only 2.67% and 3.66% of the CSV times, respectively. 

 

Figure 13:  HDF5 main benefits. More information available at https://www.hdfgroup.org/solutions/hdf5/ 

- .tsv: Tab-separated values (TSV) is a simple, text-based file format for storing tabular data.[3] Records 

are separated by newlines, and values within a record are separated by tab characters. The TSV format 

is thus a delimiter-separated values format, similar to comma-separated values. TSV is a simple file for-

mat that is widely supported, so it is often used in data exchange to move tabular data between differ-

ent computer programs that support the format. For example, a TSV file might be used to transfer in-

formation from a database to a spreadsheet. 

1.1.1.1.2 EXECFLOW 

The workflow that executes Ginestra as a standalone task uses a single data pipeline to create the input_pa-

rameters.in file, containing the material parameters to be used for the calculation of the device I-V curve. The 

workflow is executed by AiiDA with the command: 

$ ./run_workflow.py workflow05.yaml 
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1.1.2 SUCCESS STORY [2] - COMPOSITE MANUFACTURING SIMULATION (SISW)  

This use case involves virtual manufacturing for an automotive woven reinforced composite B-Pillar of a car-body 

as shown in Figure 14, using Resin Transfer Molding (RTM) as manufacturing technique.  

 

Figure 14: B-Pillar made of Chomarat C-WEAVE™ 285T 3K HS textile. 

The RTM technique is a commonly used composite manufacturing process that involves injecting liquid resin into 

a preform (a dry reinforcement material such as fibers) placed in a closed mold under pressure. RTM allows 

manufacturing composite parts of complex shapes in a large quantity. The main manufacturing steps include 

draping of the dry reinforcement onto the mold, resin infusion, curing at elevated temperatures, following by a 

cooling down and releasing the part from the mold [1]. A multi-scale modelling and simulation workflow, pro-

posed in this Success Story (Figure 15) is extended to performance simulation, including the effect of the manu-

facturing process (local fiber orientation, residual stresses, residual deformations, ...). 

 

Figure 15: Schematic overview of the Success Story 2. 
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An important parameter for the infusion simulation is the nominal permeability: the ability of a fluid (e.g., epoxy 

resin) to flow through a fibrous reinforcement when subject to an external force (pressure). An automated work-

flow for saturated permeability (steady-state permeability when the reinforcement is fully saturated with a test 

liquid, and flow is in the steady state) computation has been implemented in Simcenter 3D as depicted in Figure 

16 [2]. 

 

Figure 16: Permeability computation workflow (shown on the example of Chomarat C-WEAVE™ 285T 3K HS). 

To compute the saturated permeability of a composite unit cell, users are required to provide a meshed unit cell, 

which can be either microCT-based or CAD-based. The proposed workflow was validated using micro-CT based 

numerical validation [2].  MicroCT imaging is often impractical due to the destructive nature of sample prepara-

tion, limited availability of equipment, and the associated costs of both the equipment and software required for 

segmentation and finite element model reconstruction. As an alternative, CAD-based models generated based 

on material characteristics prove to be a viable option, and this approach will be the focus of this deliverable. 

The following section 1.1.2.1 describes geometry and mesh generation of a woven composite unit cell using the 

open-source software Gmsh2 based on a set of input data describing the textile. It includes a detailed description 

of coupling this pre-processing step with the OpenModel OIP for efficient input/output data flow. The resulting 

mesh is then available to the user for the computation in FE (finite element) simulation for further analysis.  

Deliverable D3.7 M36 CAE Wrappers - Interface wrappers for OIP to integrated CAE platform, aiming to facilitate 

a broader connection with industrial end-users will demonstrate how to import generated mesh into Simcenter 

3D for permeability computations.  

1.1.2.1 PREPROCESSING WRAPPER: GMSH 

Gmsh is an open-source 3D FE mesh generator with a built-in CAD (Computer Aided Design) engine and post-

processor. Its design goal is to provide a fast, light, and user-friendly meshing tool with parametric input and 

flexible visualization capabilities. Gmsh is built around four modules (geometry, mesh, solver and post-pro-

cessing), which can be controlled with the graphical user interface, from the command line, using text files writ-

ten in Gmsh's own scripting language (.geo files), or through the C++, C, Python, Julia and Fortran application 

programming interfaces. 

 
2 https://gmsh.info/  
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For this Success Story 2 on “Composite Manufacturing Simulation”, Simcenter Multimech was utilised to gener-

ate geometry and mesh of a woven composite unit cell, leveraging C++ application programming interface of 

Gmsh. Other types of composites such as unidirectional continuous fiber reinforced composites, particulate com-

posites with/without voids, short fiber reinforced composites can be generated too, but their generation is out 

of scope for this Success Story. 

 

1.1.2.1.1 DATA MODELS 

JavaScript Object Notation (JSON3) is a standard text-based format for representing structured data based on 

JavaScript object syntax. It is commonly used for transmitting data in web applications (e.g., sending some data 

from the server to the client, so it can be displayed on a web page, or vice versa). The data model describing the 

workflow input is a json file with the following structure, ensuring a smooth data flow between OpenModel OIP 

and a simulation workflow: 

{ 
    "uri": "http://openmodel.eu/meta/0.1/MicrostructureInputGeometryMeshProperties",  
    "description": "Entity for microstructure geometry and mesh generation.", 
    "dimensions": { 
    }, 
    "properties": { 
        "weaveType": { 
            "type": "string", 
            "description": "Weave type." 
        }, 
        "weaveHarness": { 
            "type": "int", 
            "description": "Number of harness to create the weave microstructure." 
        }, 
        "weaveTowHeight": { 
            "type": "float", 
            "unit": "mm", 
            "description": "Tows Height" 
        }, 
       "weaveTowSpacing": { 
            "type": "float", 
            "unit": "mm", 
            "description": "Spacing between tows." 
        }, 
       "weaveTowWidth": { 
            "type": "float", 
            "unit": "mm", 
            "description": "Tows Width." 
        }, 
       "weaveNumberOfStacks": { 
            "type": "int", 
            "description": "Number of stacks." 
        }, 
       "meshRefinement": { 
            "type": "int", 
            "description": "Mesh size: 0 very coarse, 5 very fine." 

 
3 https://developer.mozilla.org/en-US/docs/Glossary/JSON  

https://developer.mozilla.org/en-US/docs/Glossary/JSON
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        }   
    } 
} 

1.1.2.1.1.1 INPUT 

The input parameters for Simcenter Multimech to generate woven composite unit cell geometry and mesh are 

listed in Table 4. These define the geometric constraints (weave type, weave harness, spacing between tows, 

tow widths and height, number of stacks) and the mesh size to discretise geometry. 

Table 2: Input parameters for Gmsh wrapper 

Property name Property 
description 

Type 
Default va-

lues 
Available opti-

ons 
Units 

weaveType Weave Type string twill plain/ twill/ satin N/A 

weaveHarness 

Number of 
harness to cre-
ate the weave 
microstructure 

value 2 2,3,4,5 N/A 

weave-
TowHeight 

Tow height value 0.5 0.5-2 mm 

weaveTowSpa-
cing 

Spacing 
between tows 

value 1 0-10 mm 

weave-
TowWidth 

Tow width value 3 
 

mm 

weaveNumber-
OfStacks 

Number of 
stacks 

value 1 0.1-10 N/A 

meshRefine-
ment 

Mesh refine-
ment 

value 2 (coarse) 
1-5 (1 = very 
coarse, 5 = very 
fine)   

N/A 

 

The values of input data are stored in .yaml format. YAML, which stands for "YAML Ain't Markup Language" or 

sometimes "Yet Another Markup Language," is a human-readable data serialization format. It is often used for 

configuration files and data exchange between languages with different data structures. YAML is designed to 

be easy to read and write for humans while being easily converted to and from data structures used by pro-

gramming languages4. 

Figure 17 shows the Yaml file containing the input values used for the Gmsh wrapper. 

 
4 https://en.wikipedia.org/wiki/YAML 
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Figure 17: Yaml file for Gmsh wrapper input. 

1.1.2.1.1.2 OUTPUT 

The input data from Table 2: Input parameters for Gmsh wrapperTable 2 with the values from Figure 17 are 

processed by Simcenter Multimech to create geometry and mesh for Gmsh. The output is a text file .msh that 

contains nodes and elements and can be used as an input in FE simulations. For a more detailed information on 

file structure, please consult Gmsh documentation: https://gmsh.info/dev/doc/texinfo/gmsh.pdf 

The example of .msh file for a woven unit cell is presented in Table 3 

Table 3: Output example:  .msh file 

Identifier Example Description 

$PhysicalNa-
mes 

$PhysicalNames 
9 
2 4 "mmExtBoundary_3_minus" 
2 5 "mmExtBoundary_3_plus" 
2 6 "mmExtBoundary_1_minus" 
2 7 "mmExtBoundary_1_plus" 
2 8 "mmExtBoundary_2_minus" 
2 9 "mmExtBoundary_2_plus" 
3 1 "Warp Tows" 
3 2 "Weft Tows" 
3 3 "Matrix" 

Number of physical names 
Entry 1: physical dimension 
Entry 2: physical tag 
Entry 3: physical name 
 
mmExtBounday: groups of opposite faces that 
can be used by a user to define boundary condi-
tions 
Warp/Weft tows: groups that defines the yarns 
Matrix: group that define the matrix 

$Nodes 

$Nodes 
1262 
1 0 -2 -0.25 
2 0 -2 0.25 
3 0 -3.5 0 
4 0 -0.5 0 

Total number of nodes 
Entry 1: node id 
Entry 2-4: Nodes coordinates 

$Elements 

6887 
1 2 2 6 200 380 45 373 
2 2 2 6 200 377 376 47 
3 2 2 6 200 373 374 753 

Total number of elements  
Entry 1: element ID 
Entry 2: element type  
Entry 3: reference to a tag 1 (yarns/matrix) 
Entry 4: reference to a tag 2 (mmEXTBoundary) 
Entry 5 – 8: Nodal connectivity 
 

https://gmsh.info/dev/doc/texinfo/gmsh.pdf
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Note: 
element type "2" - 3-node triangles 
element type "4" - 4-node tetrahedron 

 

A reference to the output .msh file, that can be taken by the user for further FE analysis is provided in a Micro-

structureInputGeometryMeshProperties with the following .json representation: 

{ 
    "uri": "http://openmodel.eu/meta/0.1/MicrostructureInputGeometryMeshProper-
ties",  
    "description": "Entity for generated microstructure mesh.", 
    "dimensions": { 
    }, 
    "properties": { 
        "msh_file": { 
            "type": "string", 
            "description": ".msh file containing nodes and elements." 
        } 
    } 
} 

 

1.1.2.1.2 EXECFLOW 

The oteapi pipeline execflow5 utility is used to retrieve the available input data and make it available for the 

workflow execution. 

   - workflow: execflow.oteapipipeline 
     inputs: 
       pipeline: 
         $ref: file:micromech_pipeline_input.yml 
       run_pipeline: pipe_input 
       from_cuds:   
         - micromech_aiida 
     postprocess: 
       - "{{ ctx.current.outputs.results['micromech_aiida']|to_ctx('micro-
mech_mic') }}" 

 

The oteapi pipeline execflow utility executes the following pipeline, which is composed by two steps. In the first 

step, input data are read from the input yaml file. In the second, the DLite plugin write_micromech writes out 

the micromech.mic that will be used by Simcenter Multimech to generate the mesh .msh file. 

version: 1 
path: 

 
5 https://pypi.org/project/ExecFlowSDK/ 
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strategies: 
  - dataresource: load_data 
    downloadUrl: "file:/// SS2wrapper_micromech/micromech_input_values.yml"  
    mediaType: application/vnd.DLite-parse 
    configuration: 
      driver: yaml 
      options: "mode=r" 
      label: input 
 
  - function: write_micromech_script  
    functionType: application/vnd.DLite-generate 
    configuration: 
      driver: write_micromech 
      location: /SS2wrapper_micromech/micromech.mic  
      options: "mode=w" 
      label: input 
 

Once the input pipeline is executed, micromech.exe command from Simcenter Multimech is used to generate 

the mesh. A description of the workflow is given below. The output of this workflow is micromech.msh  which 

contains the mesh generated by the software. 

   - workflow:  execflow.exec_wrapper 
     inputs: 
       command: "/mnt/c/Program\\ Files/Siemens/SimcenterMultimech_2306/bin/micromech.exe" 
       arguments: 
         - "{script}" 
         - "-b" 
       files: 
         script: 
           filename: "micromech.mic" 
           node: "{{ctx.micromech_mic}}" 
           template: "/home/b4xpnt/workdir/SS2wrapper_micromech/micromech.mic" 
       outputs: 
         - micromech.msh 
     postprocess: 
       - "{{ ctx.current.outputs['micromech_msh']|to_ctx('micromech_msh') }}" 

 

The last step describes the data retrieval. We retrieve the information from the context, in particular the uuid 

(unique universal into data node, to make it available to the rest of the workflow. 

 

   - workflow: execflow.oteapipipeline 
     inputs: 
       pipeline: 
         $ref: file:micromech_pipeline_output.yml 
       run_pipeline: pipe_output 
       to_cuds:   
         - micromech_msh 
       micromech_msh: "{{ctx.micromech_msh.uuid}}"   
     postprocess: 
       - "{{ ctx.current.outputs['collection_id']|to_ctx('collection_uuid') }}"  

With the corresponding pipeline: 

version: 1 
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path: 

strategies: 

  - function: datanode2cuds 

    functionType: aiidacuds/datanode2cuds 

    configuration: 

      names: to_cuds 

 

  - function: saveMesh 

    functionType: application/vnd.DLite-generate 

    configuration: 

      driver: save_msh 

      location: ./mesh 

      label: micromech_msh 

 

pipelines: 

  pipe_output: datanode2cuds | saveMesh 

 

1.1.2.2 POSTPROCESSING .MSH FILE 

 

Generated .msh file contains nodes and elements that the user can leverage in various FE simulations. Mesh 

visualisation can be done directly in Gmsh (Figure 18). 

 

 

 
 

Figure 18: Gmsh GUI with visualised warp and weft tows from a woven unit cell. 

Different types of woven unit cells are depicted in Figure 19. 
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Figure 19: Visualisation of woven unit cell for different weave types. 

All data models and workflow descriptions are available in the OpenModel Github project at 

https://github.com/H2020-OpenModel/SuccessStory2_wrappers.  

  

https://github.com/H2020-OpenModel/SuccessStory2_wrappers
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1.1.3 SUCCESS STORY [3] – CIVIL ENGINEERING – REINFORCED CONCRETE (HYDRO, 

SINTEF, HEREON) 

The workflow in Success Story 3 comprises multiple steps of varying complexity. The two most critical and chal-

lenging steps are the Finite Element simulation of the Al reinforced concrete beam and the Finite Element sub-

model of the layer deformation. These steps were described in detail in D3.3, including the required wrappers 

for postprocessing of the output files. Therefore, there is not much need for additional pre- and post-processing 

wrappers in this Success Story. 

However, these two steps in the workflow do output mesh files in the XDMF format, which can be visualized with 

ParaView. A ParaView post-processing wrapper has been developed for Success Story 6 and is described in more 

detail in Section 1.1.6. 

To read the new file format, the wrapper requires a data model for the XDMF file format used in Success Story 

3, as shown in Figure 12. This necessitates only a slight modification of the wrapper to accommodate reading the 

new file. This demonstrates the potential for interoperability of the OpenModel platform, as the wrapper devel-

oped for one Success Story can be easily adapted for use in another Success Story and its software requirements. 

{ 

  "uri": "http://openmodel.eu/meta/0.1/xdmfFile", 

  "description": "Entity to represent a set of xdmf files", 

  "dimensions": { 

    "number_of_files": "Number of xdmf files." 

  }, 

  "properties": { 

    "files": { 

      "type": "string", 

      "dims": ["number_of_files"], 

      "description": "List of xdmf file names." 

    } 

  } 

} 
 

Figure 20: Data model for a set of xdmf files for visualisation and post-processing with ParaView. 
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1.1.4 SUCCESS STORY [4] – METAL FORMING: RESOURCE EFFICIENT PROCESSING AND 

MANUFACTURING (HEREON) 

Success Story 4 uses a generalizable machine learning (ML) approach that utilizes experimental data to predict 

material properties and guide metal forming process parameters. At the heart of this workflow is an ensemble 

of shallow artificial neural networks. These networks have been fine-tuned through hyperparameter optimiza-

tion to accurately predict material behaviors. This method represents a significant shift from traditional linear 

regression models, enabling more effective use of experimental data and leading to improved predictive capa-

bilities in metal forming. The ML-driven approach outlined in Success Story 4 offers a scalable solution, promising 

substantial advancements in optimizing resource allocation and refining manufacturing processes. In this in-

stance, the workflow uses material properties and process parameters as both input and output, obviating the 

need for pre- and post-processing software. A detailed description of the modeling wrappers used in Success 

Story 4 is provided in Deliverable D3.3. 
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1.1.5 SUCCESS STORY [5] – DIGITAL POWDER TESTING (CMCL) 

Success Story 5 leverages CMCL’s physics-based proprietary tools kinetics and SRM Engine Suite along with the 

advanced data analytics tool MoDS. Via introduction of an end-to-end digital workflow, all the internal interac-

tions between these toolkits, and ensuing connection to the OpenModel OIP, is managed through the MoDS 

interface. Dealing with the execution of the Success Story in this way, would simplify the workflow as far as the 

OIP is concerned, and requires a dedicated data analytics and modelling wrapper for MoDS toolkit. Such a wrap-

per is currently under development and will be reported as a separate deliverable (D3.6) in the project. To avoid 

duplication, further details about this wrapper will only be covered in that deliverable. 
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1.1.6 SUCCESS STORY [6] – FUEL CELL MODELLING (DCS, TOYOTA, HEREON)  

Success Story 6 involves the modelling of hydrogen fuel cells for use in the automotive industry. The fuel cell 

works by supplying hydrogen from one end and oxygen from the other, with the electrolysis reaction between 

them happening in the catalyst. The reaction produces water, which must be removed through the same porous 

media through which oxygen is supplied. These are, therefore, competing processes, and it is important to de-

termine the flow properties through the porous media to establish the performance of the fuel cell.  

The modelling approach for this process is a complex one: it requires modelling flow through porous media of 

different scales, while capturing the electrical conductivity through the porous material.  

The model contains three steps: 

• Calibration: in this step, the electrical properties of the porous material are calibrated from experi-

mental measurements of the overall fuel cell resistivity. 

• Generation of the porous media: the porous media itself is created using the Discrete Element Method 

(DEM) with the software Aspherix. 

• Flow modelling: the flow through the porous media is simulated with a coupled simulation using Com-

putational Fluid Dynamics and DEM. This calculates the flow of oxygen and water vapour through the 

porous media, while simultaneously simulating the electrical current through the material. This step 

uses the software Aspherix and CFDEMcoupling. 

 

Figure 21: Success story workflow description. 

As with any modelling workflow, this setup requires some preprocessing, in particular the mesh generation for 

the CFD calculations, and postprocessing for visualization of the results. For Success Story 6, mesh generation is 

performed with blockMesh, while postprocessing and visualization are done with ParaView. Wrappers have been 

developed for both applications and are discussed below. On top of this, a wrapper has been developed for the 

pre-processor SALOME, which allows for geometry and mesh generation. 
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PRE-PROCESSING WRAPPER: BLOCKMESH 

 
blockMesh is a utility distributed with OpenFOAM. It enables the creation of structured meshes featuring para-
metric design, grading options, and curved edges. 

When executed, blockMesh reads a dictionary, which specifies the geometry and discretization, processes the 

mesh specifications, and outputs mesh data into: 

• points, 

• faces, 

• cells, 

• boundaries  

within the same directory.  

The fundamental concept of blockMesh involves dividing the geometric domain into a series of three-dimen-

sional hexahedral blocks. These blocks' edges can take the form of straight lines, arcs, or splines. By defining the 

desired cell count in each block direction, blockMesh can generate the corresponding mesh data. 

1.1.6.1.1 INPUT 

The input parameters for blockMesh are listed in Table 4. These define the geometric constraints (the size of the 

volume), the grading in each direction (how many mesh cells are distributed in that direction) and the name of 

each domain boundary. 

Figure 22 shows the YAML file containing the inputs in the table, used as input for the blockMesh wrapper. 

Table 4: Input parameters for blockMesh wrapper 

Name Type description 

min x float Minimum dimension of the domain in x direction 

min y float Minimum dimension of the domain in y direction 

min z float Minimum dimension of the domain in z direction 

max x float Maximum dimension of the domain in x direction 

max y float Maximum dimension of the domain in y direction 

max z float Maximum dimension of the domain in z direction 

grading_x int Discretisation in x direction 

grading_y int Discretisation in y direction 
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Figure 22: Yaml file for blockMesh wrapper input. 

 

1.1.6.1.2 OUTPUT 

The output of blockMesh can be parsed to a CFDmesh entity, which is defined as below, and whose properties 

are summarized in Table 5. 

grading_z int Discretisation in z direction 

B_low_x string Name of the boundary at x min 

B_high_x string Name of the boundary at x max 

B_low_y string Name of the boundary at y min 

B_high_y string Name of the boundary at y max 

B_low_z string Name of the boundary at z min 

B_high_z string Name of the boundary at z max 
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"uri": "http://openmodel.eu/meta/0.1/CFDMesh", 

  "description": "Entity to represent a CFD mesh", 

  "dimensions": [ 

    { 

      "name": "npoints", 

      "description": "Number of points." 

    }, 

    { 

      "name": "ninternalfaces", 

      "description": "Number of internal faces." 

    }, 

    { 

      "name": "nfaces", 

      "description": "Number of faces." 

    }, 

    { 

      "name": "ncells", 

      "description": "Number of cells." 

    } 

  ],  

  

Table 5: Properties of a CFDmesh entity. The point, cell_face and cell types are so-called ref-types referring to the 

http://openmodel.eu/meta/0.1/point, http://openmodel.eu/meta/0.1/cell_face and http://openmodel.eu/meta/0.1/cell data models 

listed below. 

Name Type dimension description 

points point npoints Mesh points 

faces cell_face nfaces Connectivity: which points 
constitute the face. 

cells cell ncells which faces constitute the 
cell 

owner float nfaces List containing which cell 
owns the face. 

neighbour float ninternalfaces List containing which cell is 
considered neighbour 

In Table 5, new data types are used, namely point, cell_face and cell. These are defined below. 

 

 

http://openmodel.eu/meta/0.1/point
http://openmodel.eu/meta/0.1/cell_face
http://openmodel.eu/meta/0.1/cell
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Point 

  "uri": "http://openmodel.eu/meta/0.1/point", 

  "description": "Entity to represent a point", 

  "dimensions": [{ 

    "name": "space_dim", 

    "description": "space dimensionality." 

  }], 

  "properties": [ 

    { 

      "name": "coordinates", 

      "shape": ["space_dim"], 

      "type": "double", 

      "description": "point coordinates (x,y,z)." 

  } 

  ]  

Face 

  "uri": "http://openmodel.eu/meta/0.1/cell_face", 

  "description": "Entity to represent points composing a face", 

  "dimensions": [{ 

    "name": "num_of_points", 

    "description": "number of points that compose the face." 

  }], 

  "properties": [ 

    { 

      "name": "points", 

      "shape": ["num_of_points"], 

      "type": "int", 

      "description": "list of points that compose the face." 

  } 

  ]  
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Cell 

  "uri": "http://openmodel.eu/meta/0.1/cell", 

  "description": "Entity to represent a cell", 

  "dimensions": [{ 

    "name": "num_of_faces", 

    "description": "number of faces that compose the cell." 

  }], 

  "properties": [ 

    { 

      "name": "faces", 

      "shape": ["num_of_faces"], 

      "type": "int", 

      "description": "list of faces that compose the cell." 

  } 

  ] 
 

 

1.1.6.1.3 EXECFLOW 

The reading of the required inputs, described in Section 1.1.6.1.1, is described in Figure 23 and Figure 24.  

Figure 23 depicts the use of the oteapi pipeline ExecFlow utility to execute the pipeline and recover information, 

which is then sent to the global workflow context. 

 

Figure 23: blockMesh wrapper: Input reading. 

Figure 24 shows the pipeline, which is composed by two steps. In the first step, input data are read from the 

input yaml file. In the second, the DLite plugin write_blockMeshDict uses the read data and writes out the dic-

tionary that will be used by blockMesh to generate the mesh data. 
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Figure 24: Input pipeline with the loading of the data and the preparation of the blockMesh dictionary. 

Once the input pipeline is executed, the shell_job utility is used to run blockMesh. A description of shell_job is 

given in Figure 25. From the execution of blockMesh we recover a folder called constant which contains the 

dictionary file generated by the software. 

 

Figure 25: Shell job execution of the blockMesh wrapper. 

In the last step, described in Figure 26, data is parsed to create an instance of the CFDmesh entity described in 

Section 1.1.6.1.2. 
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Figure 26: Results parsing of the blockMesh wrapper. 

The pipeline which creates the CFDmesh instance is shown in Figure 27. We recover the information from the 

context, particularly the uuid, to make it available to the rest of the workflow. In fact, the cfd_mesh created and 

the end of the pipeline is then sent to the context in the postprocessing step. 

 

Figure 27: Pipeline to parse the mesh files. 

 

GENERATE GEOMETRY AND MESH: SALOME WRAPPER 

SALOME is a multi-platform open-source scientific computing environment, allowing the realization of industrial 
studies of physics simulations.  

In this context, we are interested only in two SALOME modules which handle geometry and meshes:  
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● GEOM: this component provides multiple functionalities for creating, viewing, and modifying geomet-
ric CAD models. 

● SMESH: mesh generator, compatible with the UNV, MED, STL, CGNS, SAUV and GMF formats. It con-
tains the NetGen algorithms, mesh handling functionalities, and mesh quality control operations. 

Since the creation of geometry is a complex task, in this deliverable we will demonstrate the wrappers for SA-
LOME for simple 2D and 3D shapes, namely: 

● Square plate. 
● Cube. 
● Sphere. 
● Cylinder. 

 

1.1.6.1.4 DATA MODELS 

The file documenting the workflow input is a json file, with the following structure: 
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{ 

 "uri": "http://openmodel.eu/meta/0.1/salomeInputShape", 

 "description": "Input for salome script", 

 "dimensions": {}, 

 "properties": { 

   … properties describing the shapes … 

 

   "max_size": { 

     "type": "float", 

     "description": "maximum size of the mesh elements" 

   }, 

   "min_size": { 

     "type": "float", 

     "description": "minimum size of the mesh elements" 

   }, 

   "discr_type": { 

     "type": "string", 

     "description": " discretization type (hexa or tetra)" 

   }, 

   "mesh_type": { 

     "type": "string", 

     "description": " Mesh type surface or volume" 

   }, 

   "name": { 

     "type": "string", 

     "description": "name stl file" 

   } 

 } 

} 

 
 

Figure 28: Data model describing SALOME script 

 

All the shapes follow the same structure, with a series of properties that describe the geometry, followed by the 

discretization and mesh properties. 

 

1.1.6.1.5 INPUT 
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The input parameters for generating shapes and meshes are contingent upon the user's desired outcome, as 

briefly outlined in the preceding section. Table 6 delineates the parameters governing the mesh. Table 7 to Table 

10 detail the inputs necessary for creating the various shapes.  

Table 6: Input parameters for mesh. 

 

In Figure 29 we show the same geometry with different mesh discretization, hexahedral and tetrahedral. Typi-

cally, the choice of mesh discretization stems from the application of different numerical methods; the former 

is prevalent in the finite volume method, while the latter is characteristic of the finite element method. 

 

Figure 29: Example of the same geometry (cube) with different discretization type. Left: hexahedral mesh. Right: Tetrahedral mesh. 

Figure 30 shows a single geometry with tetrahedral mesh, but in one case we want a surface (2D) mesh, while 

in the other we want a volume (3D) mesh. 

 

Name Type description 

max_size float Maximum size allowed for mesh elements. 

min_size float Minimum size allowed for mesh elements. 

discr_type string The mesh can be generated using tetrahedra of hexahedra. 

mesh_type string The mesh can be the result of surface or volume discretization. 

name string Name of the generated mesh. 
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Figure 30: Example of the same geometry (sphere) with different mesh type. Left: surface mesh. Right:  volume mesh. 

 

Table 7 : Input parameters to generate a plate. 

Table 8 : Input parameters to generate a sphere. 

Name Type description 

min x float Minimun dimension of the plate in x direction 

min y float Minimun dimension of the plate in y direction 

min z float Minimun dimension of the plate in z direction 

max x float Maximun dimension of the plate in x direction 

max y float Maximun dimension of the plate in y direction 

max z float Maximun dimension of the plate in z direction (should be equal to min z) 

Name Type description 

x center float x coordinate of the center 

y center float y coordinate of the center 

z center float z coordinate of the center 

radius float Radius of the sphere 
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Table 9 Input parameters to generate a cylinder. 

 

Table 10 : Input parameters to generate a rectangular cuboid. 

 

Name Type description 

min x float x coordinate of the center (lower circle) 

min y float y coordinate of the center (lower circle) 

min z float z coordinate of the center (lower circle) 

max x float x coordinate of the center (upper circle) 

max y float y coordinate of the center (upper circle) 

max z float z coordinate of the center (upper circle) 

radius float Radius of the cylinder 

height float Height of the cylinder 

Name Type description 

min x float Minimun dimension of the rectangular cuboid in x direction 

min y float Minimun dimension of the rectangular cuboid in y direction 

min z float Minimun dimension of the rectangular cuboid in z direction 

max x float Maximun dimension of the rectangular cuboid in x direction 

max y float Maximun dimension of the rectangular cuboid in y direction 

max z float Maximun dimension of the rectangular cuboid in z direction  
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{ 

 "uri": "http://openmodel.eu/meta/0.1/salomeInputSphere", 

 "description": "Input for salome script to create and discretize a 

sphere", 

 "dimensions": {}, 

 "properties": { 

   "x_center": { 

    "type": "float", 

     "description": "x coordinate of the center" 

   }, 

   "y_center": { 

     "type": "float", 

     "description": "y coordinate of the center" 

   }, 

   "z_center": { 

     "type": "float", 

     "description": "z coordinate of the center" 

   }, 

   "radius": { 

     "type": "float", 

     "description": "radius of the sphere" 

   }, 

   "max_size": { 

     "type": "float", 

     "description": "maximum size of the mesh elements" 

   }, 

   "min_size": { 

     "type": "float", 

     "description": "minimum size of the mesh elements" 

   }, 

   "discr_type": { 

     "type": "string", 

     "description": " discretization type (hexa or tetra)" 

   }, 

   "mesh_type": { 

     "type": "string", 

     "description": " Mesh type surface or volume" 

   }, 

   "name": { 

     "type": "string", 

     "description": "name of the file" 

   } 

 } 

}  

Figure 31: Example of data description file for a sphere. 
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1.1.6.1.6 OUTPUT 

The final result of the workflow varies based on the type of mesh requested by the user. In the case of surface 

meshes, exported as a stl file, the output is documented in Figure: 32,  whereas in the case of volume meshes, 

which are exported as cgns files, it is described in Figure 33. 

{ 

 "uri": "http://openmodel.eu/meta/0.1/stlMesh", 

 "description": "Entity to represent a stl mesh", 

 "dimensions": [{ 

   "name": "number_of_files", 

   "description": "Number of stl files." 

 }], 

 "properties": { 

   "files": { 

     "type": "string", 

     "dims": ["number_of_files"], 

     "description": "list of stl file" 

   }}} 
 

Figure: 32 Data description for the surface mesh (stl file). 

{ 

 "uri": "http://openmodel.eu/meta/0.1/cgnsMesh", 

 "description": "Entity to represent a cgns mesh", 

 "dimensions": [{ 

   "name": "number_of_files", 

   "description": "Number of cgns files." 

 }], 

 "properties": { 

   "files": { 

     "type": "string", 

     "dims": ["number_of_files"], 

     "description": "list of cgns file" 

   }}} 
 

Figure 33: Data description for the volume mesh (cgns file). 
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1.1.6.1.7 EXECFLOW 

Figure 34 depicts the use of the oteapi pipeline execflow utility to execute the pipeline and recover information, 

which is then sent to the global workflow context. 

 - workflow: execflow.oteapipipeline 

   inputs: 

     pipeline: 

       $ref: 'file:pipeline_salome.yml' 

     from_cuds: 

       - salome_input 

   postprocess: 

     -"{{ctx.current.outputs['collection_id']|to_ctx('collection_uuid')}}" 
 

Figure 34:  Input reading for the SALOME wrapper. 

Figure 35 shows the pipeline, which is composed of two steps. In the first step, input data are read from the input 

yaml file. In the second, the DLite plugin write_salome_script, uses the data and writes out the script that will be 

used by SALOME to generate the mesh data. 

strategies: 

 - dataresource: load_data 

   downloadUrl: "file:////tmp/salome_input.yml" 

   mediaType: application/vnd.dlite-parse 

   configuration: 

     driver: yaml 

     options: "mode=r" 

     label: input 

 

 - function: write_salome_script 

   functionType: application/vnd.dlite-generate 

   configuration: 

     driver: write_salome_shape 

     location: tmp/salome_script.py  

     options: "mode=w" 

     label: input 

pipelines: 

 pipe: load_data | write_salome_script 
 

Figure 35: Input pipeline for SALOME wrapper. 

Once the input pipeline is executed, the exec_wrapper utility is used to run SALOME. A depiction of the wrapper 

structure is given in Figure 36. From the execution of SALOME we recover the remote folder which contains the 

mesh files. Information is retrieved from the context, in particular the data node uuid (unique universal identi-

fier), and made available to the rest of the workflow. 
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- workflow:  execflow.exec_wrapper   

    inputs: 

     command: "/home/SALOME_9_9_0/salome" 

     arguments: 

       - "-t" 

       - "{script}" 

     files: 

       script: 

         filename: "salome_script.py" 

         template: "/tmp/salome_script.py" 

     outputs: 

 

 - postprocess: 

   - "{{ ctx.current.outputs['remote_folder'] | 

to_ctx('remote_folder')}}" 
 

Figure 36: SALOME wrapper execution using exec_wrapper. 

In the last step, depicted in Figure 37, data is parsed to create an instance of the stlMesh or cgnsMesh entity 

described in 1.1.6.1.6.  

 

- workflow: execflow.oteapipipeline 

   inputs: 

     pipeline: 

       $ref: 'file:pipeline_salome_out.yml' 

     to_cuds: 

       - path 

     from_cuds: 

       - mesh 

     path: "{{ ctx.remote_folder.uuid }}" 

 - postprocess: 

     -"{{ ctx.current.outputs['results']['mesh']|to_ctx('mesh')}}" 
 

Figure 37: Execution of the output pipeline in the SALOME wrapper. 

The pipeline which creates the mesh instance is shown in Figure 38. Using a combination of DLite plugins we can 

create an instance of the mesh data, which can be then recovered and used by other part of the workflow. For 

example, we can use the ParaView wrapper to visualize the mesh. 
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version: 1 

strategies: 

 - function: datanode2cuds 

   functionType: aiidacuds/datanode2cuds 

   configuration: 

     names: to_cuds 

 

 - function: parseMesh 

   functionType: application/vnd.dlite-generate 

   configuration: 

     driver: parse_mesh 

     location: ./mesh 

     label: path 

 

 - dataresource: inst_parseMesh 

   downloadUrl: "file:///tmp/mesh/uuid_meshes" 

   mediaType: application/vnd.dlite-parse 

   configuration: 

     driver: parse_mesh_i 

     options: "mode=r" 

     label: stl_mesh 

 

 - function: cuds2datanode 

   functionType: aiidacuds/cuds2datanode 

   configuration: 

     names: from_cuds 

 

pipelines: 

 pipe: datanode2cuds | parseMesh | inst_parseMesh | cuds2datanode 
 

Figure 38: Output pipeline of the SALOME wrapper. 
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POSTPROCESSING WRAPPER: PARAVIEW 

ParaView is an open-source data visualization and analysis software designed for use with scientific and engi-

neering data. It is commonly used to visualize complex datasets, perform simulations, and analyze results across 

various domains such as physics, engineering, and medical research. ParaView provides a graphical user interface 

that allows users to explore and visualize data using a variety of rendering techniques, including volume render-

ing, contour plots, and surface plots. It supports a wide range of data formats and can handle large datasets 

efficiently. 

In this context, we will limit the wrapper scope to the data used or generated by the success stories. The meshes, 

CFD and granular data from Success Story 6 and the xdmf file from Success Story 3. 

1.1.6.1.8 AIIDA PLUGIN 

An AiiDa plugin was developed for ParaView, which among other things execute the code shown in Figure 39. 

This plugin receives as input the uuid of the data instance to visualize. The data is read and then, based on the 

data type, a custom reader is used to transform the data from the instance into information that can be visual-

ized in ParaView. 

The readers for each data type involves the use of the vtk library and they must be customized for every data 

type. 

1.1.6.1.9 EXECFLOW 

Since ParaView is a visualization software, it only makes sense to use it at the end of other workflows. 

Figure 40 shows an example of the use of the ParaView plugin in execflow to visualize the mesh. The mesh it-

self is shown in Figure 41. 
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import vtk 

import paraview.web.venv 

from pv_readers import pv_readers 

import aiida 

aiida.load_profile() 

from aiida import orm 

 

data = orm.load_node(uuid="{uuid}") 

 

def pv_show(x, chosen_data="invalidData"): 

  wrappers = { 

    "CFDMesh": pv_readers.CFDMeshReader(), 

    "granularMedium": pv_readers.granularReader(), 

    "stlMesh": pv_readers.stlReader(), 

    "cgnsMesh": pv_readers.cgnsReader(), 

    "xdmfFile": pv_readers.xdmfReader() 

  } 

 

  chosen_wrapper = wrappers.get(chosen_data, pv_readers.notImplemented()) 

 

  return chosen_wrapper.show(x) 

 

pv_show(data, data['type'])  

Figure 39: Python script executed by the ParaView Aiida plugin. 

  - calcjob: aiida_pv 

    inputs: 

 

      code: paraview@localhost-test 

 

      uuid:  "{{ ctx.mesh.uuid }}"  
Figure 40: ParaView in execflow. 
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Figure 41: Example of a CFDMesh visualized in ParaView using the OpenModel wrapper. 
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