

2023

LOUIS PONET

 | Rte Cantonale, 1015 Lausanne

Ref. Ares(2023)711948 - 31/01/2023

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 1 | 12

2023-01-31

D4.5 DEMONSTRATION OF

EXECFLOW FOR AT LEAST

ONE FULL WORKFLOW

D 4.5: DEMONSTRATION OF EXECFLOW

FOR AT LEAST ONE FULL WORKFLOW

DOCUMENT CONTROL

Document Type Deliverable Report

Status Initial draft

Version 0.1

Responsible Louis Ponet (EPFL)

Author(s) Louis Ponet (EPFL), Casper W. Andersen (SINTEF), Thomas Hagelien (SINTEF)

Release Date 31-01-2023

ABSTRACT

OpenModel utilizes AiiDA as its workflow executor. To facilitate the dynamic and changeable nature of workflows

that will be designed and run based on the needs of the end user, a flexible method of running WorkChains is

developed based on two “meta” WorkChains. The first is the DeclarativeChain, which orchestrates the over-

all execution of the workflow, while the second is the DeclarativePipeline, which allows to execute an

OTEAPI pipeline in AiiDA, keeping track of the full data provenance. These can be described in structured text-

based files (yaml, json, etc), with a simple syntax similar to GitHub Actions or GitLab Pipelines. The end

result is a method that allows for developing and running novel AiiDA WorkChains with much less friction than

the standard method with potential impact far beyond the scope of OpenModel. In the specific case of

OpenModel, it is OntoFlow that will generate the text representation after having designed the workflow based

on the end user’s needs.

CHANGE HISTORY

Version Date Comment

0.1 2023-01-19 First Draft

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 2 | 12

2023-01-31

0.2 2023-01-27 First review by Technical Coordinator

0.3 2023-01-30 Added description of declarative pipelines

0.4 2023-01-31 Final review by technical coordinator

1.0 2023-01-31 Final

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 3 | 12

2023-01-31

TABLE OF CONTENT

Document Control ... 1

Abstract ... 1

Change History .. 1

Dissemination level ... 2

Table of Content ... 3

1 Introduction.. 4

2 Declarative Workchain ... 4

2.1 Syntax .. 5

2.2 Demonstrating Example .. 7

3 Declarative Pipeline .. 8

3.1 ExaMPLE of running a DECLARATIVE pipeline in Aiida .. 9

4 Acknowledgment ... 12

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 4 | 12

2023-01-31

1 INTRODUCTION

The two main parts of OpenModel that involve workflows, which are comprised of a series of simulations and

data pre- and post-processing steps, are OntoFlow and ExecFlow. OntoFlow handles the creation of the workflow

by reasoning about the necessary steps to achieve the final result. This will depend on the user’s requirements,

available simulations, and previously gathered data in the knowledge base. The task of ExecFlow is then to take

the generated workflow and execute it with AiiDA as the execution engine. This generally also involves fetching

and storing data from the CUDS database that is used in OpenModel. The nature and number of workflows that

will be run in the scope of OpenModel requires a way to communicate the workflows which is more flexible and

dynamic than AiiDA currently allows for. WorkChains are currently represented as Python Classes, as AiiDA is

built in Python. The reason for using Classes is that this ideally leads to WorkChains which are well-defined,

robust, and reproducible. One of the consequences of this design choice, however, is that the AiiDA daemon can

only run WorkChains that are known and registered at the time of daemon startup. This means that any new

workflow designed and submitted from OntoFlow to ExecFlow would require stopping the AiiDA daemon, gen-

erating the WorkChain Python Class, registering it, restarting the daemon, and finally submitting the WorkChain.

This is an inefficient, clunky, and most importantly brittle process: any change to how WorkChains have to be

implemented would break all previously defined WorkChains, making them by definition only reliably reproduc-

ible for one single version of AiiDA. While this process works for more generalized WorkChains, it is far from ideal

in the more dynamic context OpenModel strives to achieve.

Here we instead decided to go a different route, and develop a single “meta”- WorkChain, named Declara-

tiveChain, which can ingest a workflow specification to self-assemble the steps that comprise the workflow

on the fly. This has allowed us to develop a very minimal syntax-based representation of the workflow in a struc-

tured format using yaml or json files. In fact, the result is a novel method that allows for developing and running

a novel AiiDA WorkChain with less friction than the standard method with potential impact far beyond the scope

of OpenModel. Since the interface to AiiDA is now effectively a structured text file, any software that can output

such a file can use AiiDA as its execution engine. In the case of OpenModel this software is OntoFlow.

While data that is to be used in the workflow can be fully specified in the workflow specification, in the frame-

work of OpenModel it is desirable to ingest CUDS stored in a triple store or knowledge base. To facilitate this, we

developed a way to execute OTEAPI pipelines as AiiDA WorkChains, using similar concepts to those previously

described, leading to the DeclarativePipeline.

The implementation of the work performed in this deliverable can be found in the OpenModel GitHub repository:

https://github.com/H2020-OpenModel/WP4-documents/. Some of the work has also been contributed directly

to AiiDA.

2 DECLARATIVE WORKCHAIN

As mentioned above, the DeclarativeChain is a self-assembling AiiDA WorkChain. It takes as its input a Single-

FileData which represents an on-disk text-based representation of the workflow. Currently, this can be either a

json or yaml file. A detailed discussion of the syntax in these files will be presented below. In essence, every

WorkChain consists of a sequence of steps, each of them representing a block of computationally non-trivial

work which transforms input data to output data. The DeclarativeChain reads these steps from the input file and

internally translates them into AiiDA Processes and runs them, using some directives to allow for communicating

dataflow between each of the steps, thereby fully tracking the provenance as usual in AiiDA.

https://github.com/H2020-OpenModel/WP4-documents/

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 5 | 12

2023-01-31

2.1 SYNTAX

We will discuss the syntax of the input file to the DeclarativeChain using the yaml format, but nothing changes

when using json except the look of the file, since the JSON syntax is a subset of the YAML syntax. The most

basic structure of the file is:

 Where step-type and step-type-specifier can be:

 calcjob: entrypoint to AiiDA CalcJob or CalcFunction, e.g. calcjob: quantumespresso.pw

 workflow: entrypoint to AiiDA WorkChain or WorkFunction, e.g. workflow: quantu-

mespresso.pw.bands

 while: jinja template for while loop statement, e.g. while: {{ ctx.count < 3 }}

 if: jinja template for if statement, e.g. if: {{ ctx.count < 3 }}

The former two represents an AiiDA calculation and workflow step, respectively. The while step will execute

the body of the step while the statement is true, whereas the if step will only execute when the if statement is

true. These latter two demonstrate the use of jinja templates, which allow for the execution of some code in

a sandboxed manner. Essentially, they will dynamically replace the code in braces with the result and insert it

before parsing the step. In the examples, they look at the count variable stored in the context (ctx) object of

the workchain and insert true if it is lower than 3 and false if not.

The calcjob or workflow steps consist of 4 parts behind the scenes:

 Initialization of an AiiDA Process representing the computational task.

 Retrieval of the inputs for the Process, either from inside the context of the DeclarativeChain (e.g. data

that was previously saved to this context, more on this later), or from a textual representation inside

the DeclarativeChain input file.

 Submitting or running the Process. The first being asynchronous and non-blocking, while the latter is a

synchronous process and blocking for the given computational thread.

 Postprocessing, in which one can extract outputs of a step to be stored into the context of the Declara-

tiveChain to be used later or attach them to the outputs/results of the DeclarativeChain.

The configuration has the following structure:

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 6 | 12

2023-01-31

The inputs dictionary is a one-to-one representation of the input Nodes to the AiiDA CalcJob or WorkChain.

Behind the scenes, the <data> will be converted into the right AiiDA Data Node, provided that the CalcJob or

WorkFlow defines what it should be. If this is not the case, using the type key in the following syntax can be used

to manually declare what Data Node type should be created:

This means that “demo” will be turned into an AiiDA Str Node before being attached as the “string_input” input

to the CalcJob.

There are two more ways data can be referenced as an input. The first is by using jinja templates to extract it

from the ctx of the WorkChain (this requires it to be defined in the first place, more on this later):

The second is using jsonref to reference data that is defined somewhere else in the file, or even in another file

(see jsonref documentation for more information). In the simplest case this looks like:

The postprocess step consists of a list of jinja templates that can be executed, potentially using the two custom

jinja filters: to_ctx and to_results:

In the first postprocessing step, we take the output link ‘output_link1’ from the CalcJob of the step (represented

by ctx.current), and store it in the ‘output1’ variable. This means that later we can reference it as an input to

another step. The second step means that we take ‘output_link2’ and attach it to the outputs of the Declarative-

Chain as a whole. These two directives supply all the glue code that is required to string together steps in a

workflow.

The while and if step types have a body with a single list of steps, with the same structure as the Declarative-

Chain as a whole:

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 7 | 12

2023-01-31

Now, there is an issue with the above example. We are referencing a context variable without having defined it,

since so far we only discussed the definition of context variables as part of the postprocessing step. For such

cases, there is one other special top-level entry: setup. This has essentially the same behavior as postprocess

but it is executed when the WorkChain starts. In this case it would look like the following:

This describes all the necessary syntax to run DeclarativeChains.

2.2 DEMONSTRATING EXAMPLE

Working examples can be found in WP4-ExecFlow Demos1. The resulting provenance graph of connecting a

QuantumEspresso2 scf with a nscf3 calculation is as follows:

1 https://github.com/H2020-OpenModel/WP4-documents/tree/master/ExecFlow/Demo

2 Quantum Espresso is a density functional theory software package (https://www.quantum-espresso.org). It
has a preexisting AiiDA plugin: https://github.com/aiidateam/aiida-quantumespresso

3 An scf calculation finds the correct electronic wavefunctions and charge density associated with the ground
state of a physical system

https://www.quantum-espresso.org/

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 8 | 12

2023-01-31

A more complicated example demonstrating the full syntax capabilities and its output can be found as 6.yaml

and 6.pdf in the same directory.

3 DECLARATIVE PIPELINE

A data pipeline allows for defining the transformation of data from a data source to a consumer. The pipeline is

defined by a set of data models that document how data can be accessed, extracted, filtered, transformed, and

documented in terms of a common vocabulary. In the ExecFlowSDK (software development kit) the pipeline is

built on the OTEAPI-pipelines4 and adopted the AiiDA execution environment. In the execution of a pipeline, a

set of strategies will operate on the configuration and perform individual steps. For instance, a download strategy

will read a downloadUrl from the configuration and fetch the artifact. The configuration of a pipeline can, simi-

larly to the DeclarativeChain, be defined as a single JSON or YAML file. In the DeclarativePipeline, each element

of the pipeline is configured, and a set of pipelines can be defined as a list of the defined elements. The

OpenModel ExecFlowSDK will parse the DeclarativePipeline to configure an AiiDA WorkChain that can be exe-

cuted in the same environment as and by the DeclarativeChain. AiiDA will upon execution of the pipeline gener-

ate the provenance graph for each step in the pipeline.

4 Documentation of the OTEAPI https://EMMC-ASBL.github.io/oteapi-core/

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 9 | 12

2023-01-31

Each elementin the pipeline belongs to a specific category. In the figure above, the different categories (ele-

menttypes) are illustrated with an explanation of their purpose. OTEAPI is based on plug-ins, where a set of

strategies implement the functionality of a specific element. Each strategy defines a generic data model for the

elementtype, along with a specific configuration. In the AiiDA wrappers for the pipeline elements, these config-

urations are implemented as AiiDA Data Nodes. In the YAML/JSON declaration of the pipeline, these data models

will dictate the accepted configurations.

The basic structure of the DeclarativePipeline is defined as follows:

The YAML file consist of a series of configurations for each strategy. This corresponds to the OTEAPI documen-

tation. A pipeline is constructed by defining a named list of pipeline elements.

3.1 EXAMPLE OF RUNNING A DECLARATIVE PIPELINE IN AIIDA

Consider the following pipeline example from the ExecFlowSDK documentation. Here we define two pipeline

elements; dataresource and mapping. The data resource is defined with a downloadUrl and a mediaType. This

configuration will allow OTEAPI to decide which strategy (plugin) that will be executed. This file is stored in the

local filesystem. Here we call it pipe.yml.

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 10 | 12

2023-01-31

To execute the DeclarativePipeline in AiiDA, import the aiida.engine.run_get_pk function. This function will al-

low for a synchronous, blocking execution of a process (AiiDA will wait until the process has finished). We also

need to import the aiida.plugins.DataFactory and aiida.plugins.WorkflowFactory classes. The process executes

with the workflow entrypoint “execflow.pipeline” with the DeclarativePipeline (encapsulated in an AiiDA Data

Node) as argument.

By executing this function, an AiiDA workflow will execute OTEAPI strategies defined in the DeclarativePipeline

file. A provenance graph from the pipeline execution can be generated using verdi, a command-line interface

(CLI) tool for interacting with AiiDA.

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 11 | 12

2023-01-31

The overall hierarchy employed by OpenModel for running ExecFlow and the associated DeclarativeChain and

DeclarativePipeline elements, will be to execute a single DeclarativeChain, which may then call DeclarativePipe-

lines to both retrieve data used as input for calculations run in AiiDA and semantically map and parse eventual

outputs. All files will be generated by OntoFlow. This allows integration of materials simulation and modelling

software across several levels of integration, as well full semantic interoperability.

D4.5 DEMONSTRATION OF
EXECFLOW FOR AT LEAST
ONE FULL WORKFLOW

© OpenModel Consortium CONFIDENTIAL 12 | 12

2023-01-31

4 ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may

contain information subject to intellectual property rights. No intellectual property rights are granted by the de-

livery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the

information and views expressed herein lies entirely with the author(s).

All rights reserved.

