

2023

VALERIO LUNARDELLI (AMAT), OTELLO M ROSCIONI (GCL), ALESSANDRO
CALVIO (UNI-BO), BIJAN YADOLLAHI (CMCL), LOUIS PONET (EPFL), FRAN-
CESCA L. BLEKEN (SINTEF), JESPER FRIIS (SINTEF)

Ref. Ares(2023)6429944 - 22/09/2023

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 1 | 35

WP5-D5.5: FIRST DEMONSTRATION OF
OPENMODEL OIP

D5.5 - FIRST DEMONSTRATION OF

OPENMODEL OIP

DOCUMENT CONTROL

Document Type Deliverable Report

Status Final

Version 1.0

Responsible Valerio Lunardelli (AMAT)

Author(s) Valerio Lunardelli (AMAT), Otello M Roscioni (GCL), Alessandro Calvio (UNIBO),
Bijan Yadollahi (CMCL), Louis Ponet (EPFL), Francesca L. Bleken (SINTEF), Jesper
Friis (SINTEF).

Release Date 2023-09-22

ABSTRACT

This report aims to give an overall description of the OpenModel OIP infrastructure and its main com-

ponents, and to provide a proof-of-concept demonstration based on a simple use case. The current

deliverable (D5.5) is the first one developed for T5.5, which focuses on the application and testing of

the OIP platform. The objective of T5.5 is to test OIP in a real environment based on six use cases.

Using the KPI metrics defined in D5.5, the OpenModel OIP will be evaluated in terms of data analytics,

workflow execution, scoring and visualisation to demonstrate the capabilities and its value proposi-

tion. This report has been delayed due to its dependency on software components, which have also

been delayed.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 2 | 35

CHANGE HISTORY

Version Date Comment

0.1 2022 to
August 2023

Preparation and discussion, strong cooperation and add from
partners, alignment of content; including agreement of WP
partners, work and alignment with other WPs (WP1, WP2 and WP4)
and approval from technical manager. updated with the
documentation of the software components and execution of a
demo use case.

0.2 2023-08-23 Version updated including revision from WP leader and partners.

0.3 2023-09-18 Final version, after M30 meeting discussions.

1.0 2023-09-22 Finalized for submission.

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Ser-
vices)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

TABLE OF CONTENT

WP5-D5.5: FIRST DEMONSTRATION OF OPENMODEL OIP ... 1

Document Control ... 1

Abstract ... 1

Change History .. 2

Dissemination level ... 2

Table of Content .. 2

List of Figures ... 3

1 INTRODUCTION ... 4

OVERVIEW ... 4

OPENMODEL INNOVATION PLATFORM DESCRIPTION.. 5

OIP User profile ... 6

System overview ... 7

DEMONSTRATION OVERVIEW ... 9

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 3 | 35

2 EXECUTION AND DOCUMENTATION ... 14

2.1 Installing The OpenModel Software stack .. 15

2.2 OpenModel Ontology .. 16

2.3 OntoFlow ... 18

2.4 OntoFlow and OntoKB execution .. 20

2.5 Working with OTEAPI pipelines ... 22

2.6 ExecFlow .. 29

2.7 Declarative workflow syntax ... 29

3 CONCLUSION ... 33

4 ACKNOWLEDGMENT ... 35

LIST OF FIGURES

Figure 1: Translator process and role .. 6

Figure 2: OIP envisioned as a web service. The OIP consist of frontend elements (user interfaces),

backend components and external systems and information sources. ... 8

Figure 3: OIP framework and main components .. 8

Figure 4: Molecular dynamics simulation of water. .. 9

Figure 5: Mereological representation of the Demo number 1. ... 10

Figure 6: Workflow of the demo number 1 represented as a BPMN diagram. 11

Figure 7: Schematic representation of the Knowledge Base describing the demo number 1. 12

Figure 8: Ontological representation of different workflows sharing reusable components............... 12

Figure 9: Extension of the demo number 1 for the Verification & Validation services. 13

Figure 10: Taxonomy of materials models and relations used to specify the computational models

used for the demo number 1. ... 14

Figure 11: Taxonomy tree of the OpenModel ontology, nested into the EMMO top-level ontology. . 17

Figure 12: Illustration of OntoFlow framework consisting of two key components: the knowledge

base (OntoFlowKB) and the decision-making component (OntoFlowDM) ... 18

Figure 13: Graphical representation of all the possible workflows leading to the computation of the

density of a fluid. ... 21

file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D5.5/OpenModel_WP5_D5.5_First%20Demonstration%20of%20OpenModel%20OIP%20v1.0_VL_BY_FLB-wlc-jf-v2.docx%23_Toc146276813
file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D5.5/OpenModel_WP5_D5.5_First%20Demonstration%20of%20OpenModel%20OIP%20v1.0_VL_BY_FLB-wlc-jf-v2.docx%23_Toc146276814
file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D5.5/OpenModel_WP5_D5.5_First%20Demonstration%20of%20OpenModel%20OIP%20v1.0_VL_BY_FLB-wlc-jf-v2.docx%23_Toc146276814
file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D5.5/OpenModel_WP5_D5.5_First%20Demonstration%20of%20OpenModel%20OIP%20v1.0_VL_BY_FLB-wlc-jf-v2.docx%23_Toc146276815
file:///C:/Users/wlc/Seafile/A420295_NMPB11_OpenModel/06_berichte/DELIVERABLES/D5.5/OpenModel_WP5_D5.5_First%20Demonstration%20of%20OpenModel%20OIP%20v1.0_VL_BY_FLB-wlc-jf-v2.docx%23_Toc146276815

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 4 | 35

D5.5- FIRST DEMONSTRATION OF

OPENMODEL OIP

1 INTRODUCTION

OVERVIEW

OpenModel provides an Open Innovation Platform (OIP) for Integrated Materials Modelling, which

offers 5 main ingredients:

1) EMMO based ontology extensions as basis for all developments,

2) An Interoperability layer providing an implementation of EMMO-based,

3) A Simulation Platform based on standardised interfaces and semantic common application

programming interfaces (API), to enable integration of third-party physics-based modelling

codes,

4) Smart workflow builders that respond to semantic information and requirements and creates

on the fly advanced workflows considering Key Business and Technical Performance Indicators

(KPI) utilising the semantic power embedded in the platform, and

5) workflow executors and curators able to perform and manage the results making it readily and

transparently available for further control and processing by other platforms.

Six success stories have been considered to demonstrate such features in OpenModel, covering a wide

range of applications and reflecting the generic scope of the project, enabling it to address all materials

modelling, processing, and characterization fields. These success stories include:

• Success Story [1] – Synaptic Electronics: From Materials Properties to Next-Generation

Memory Devices (CNR, AMAT)

• Success Story [2] - Composite Manufacturing Simulation (SISW)

• Success Story [3] – Civil Engineering – Reinforced Concrete (HYDRO, SINTEF, HEREON)

• Success Story [4] – Metal Forming: Resource Efficient Processing and Manufacturing (HEREON)

• Success Story [5] – Digital Powder Testing (CMCL)

• Success Story [6] – Fuel Cell Technology (DCS, TOYOTA, HEREON)

In addition, an additional use case was developed in WP5 to allow the product manager to ensure that

the OpenModel OIP meets the user’s needs, providing feedback for the product owner to implement

the required capabilities in WP2. Overall, the WP5 focuses on demonstration of success stories, in

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 5 | 35

which a step-by-step process has been planned to ensure the successful execution of these success

stories on the platform. The first step in this process, planned for in Task 5.1, was performed and re-

ported in the submitted D5.1 where data and model information from these success stories has been

gathered. Starting from D5.1 data inputs, we refine the process by identifying data collection and cu-

ration methods from each success story, as a second step in D5.2. Primary and secondary data have

been identified, as well as their collection methods. Then, each Success Story defined its standard

technique for data curation and for preserving and sharing the information generated by the success

story. With that objective in mind, there will be many interdependencies between tasks within this WP

or across WPs. While the dependency on other tasks is evident in the WP5, there are also tasks in other

WPs that depend on this task. An example of this is Task 1.1, which deals with the platform’s develop-

ment. This task is complementary to Task 5.1 and Task 5.2 and focuses on the specific technical aspects

of data and information exchange as the basis for ontology development.

The current deliverable (D5.5) is the first one developed for T5.5, which focuses on the application and

testing of the OIP platform. The objective of T5.5 is to test the OIP in a real environment. Using the KPI

metrics defined in D5.5, the OpenModel OIP will be evaluated in terms of data analytics, workflow

execution, scoring and visualisation to demonstrate the capabilities and benefit achieved.

The D5.5 is focused on a proof-of-concept workflow demonstrating the overall OIP infrastructure, its

main components and how they holistically work together. The proof-of-concept validation will be

demonstrated with a simple use case before moving to a real environment validation phase with the

OpenModel success stories.

OPENMODEL INNOVATION PLATFORM DESCRIPTION

The OpenModel main objective is to design, create, provide and maintain a sustainable integrated OIP

that delivers predictable, validated, and traceable simulation workflows integrating third-party phys-

ics-based models, solvers, post-processors and databases seamlessly. The OpenModel project is part

of a large EMMC (European Materials Modelling Council) initiative to contribute to and develop a Eu-

ropean Ecosystem in materials modelling.

In the following section, we describe

- the targeted OIP user profile

- OIP system overview and architecture

- Design goals and quality attributes/tactics

Finally, we demonstrate the proof-of-concept capabilities of selected modules and provide some re-

strictions on the OpenModel software design. These suggestions will be outlined in the current docu-

ment.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 6 | 35

OIP USER PROFILE

The primary end user of the OpenModel OIP will typically be industrial translators and modellers. The

OIP will help them to build and execute arbitrarily complex materials modelling and simulation work-

flows, considering both technical and business KPIs. It aims to be an attractive platform for industrial

research, and to include verification and validation services.

According to the EMMC definition1, we consider “Translation” as the process of transforming industrial

problems/issues into questions to be solved by modelling and simulation tools, e.g., by supporting

industrial innovation. Translators guide manufacturers to find the optimal solution to industrial chal-

lenges using modelling workflows and advise industrial end-users in modelling / simulation execution

and interpretation of the results, as depicted in the Figure below:

Figure 1: Translator process and role

The Translator comes in as a multi-professional specialist (or team of professionals) who fulfils a role

to understand both the modelling and industrial worlds and speaks both languages.

Following the EMMC definition, the OIP is tailored for an individual or team of “Translator” users with

these skill sets:

• Industrial background

• Deep and broad knowledge of modelling and software tools, including their limitations. Exten-

sive network of modellers and an EU-based network of collaborators.

1 Hr is tova -Bogaerds , Denka, As inar i , P ie tr o, Konchakova, Nna ta l ia , Bergamasco, Luca, Marcos Ramos , Al i c ia , Goldbeck , Ger-

hard, Hoeche , Dan ie l , Sswang, Ole , Schmitz , Georg j . , EMMC trans lators guide , Zenodo, 2019. ht tps : / /do i .org /10.5281 /ze-

nodo.3552259

https://doi.org/10.5281/zenodo.3552259
https://doi.org/10.5281/zenodo.3552259

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 7 | 35

• Broad understanding of different experimental techniques and data analysis tools (suitability,

quality)

• Knowledge of economic impact: Balance between investments and expected return; use/de-

fine measurable benefits from the modelling.

• Soft and analytical skills: communication, explanation, listening, reporting, organisation, flexi-

bility, multi-tasking, quick learning.

• Being neutral: find the best expert and the most suitable modelling tools, with objective argu-

mentation on the selected models/software/executors.

• Expected to show a proven “track record” of expertise in translation, including success stories,

and modelling, if being also the modelling executor

• Managing data confidentiality.

Using the OIP, the “Translator” user will boost European Industry uptake of materials modelling and

will contribute to:

• support the business decision and reduce the time to market,

• deliver better/faster in-depth expert solutions, bridge the gap between simulation scales,

• allow to access and use multidisciplinary state-of-the-art modelling and simulation tools,

• limit the number of experiments and time to deliver,

• improve sensitivity analysis.

SYSTEM OVERVIEW

The OIP may be envisioned as a web service where the user, via the browser, can connect to the OIP

server and operate the APPs. External providers are used for authentication. The back end provides

the interoperability platform, wrappers (to external party data sources, models and simulation soft-

ware), data storage (triplestore and dataspace) and system monitoring and logging (see Figure 2).

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 8 | 35

Figure 2: OIP envisioned as a web service. The OIP consist of frontend elements (user interfaces), backend

components and external systems and information sources.

OIP has been conceived with a modular approach and the Figure 3 summarizes the holistic interac-

tion between the several components:

Figure 3: OIP framework and main components

The OIP concept is depicted in the Figure 3. The translator will access the OIP through the gateway.
The gateway is responsible for managing the authentication on the OIP and the validation of software
licenses, ensuring the security of the entire infrastructure. Below, an orchestrator redirects the
requests to the relevant OIP component and keeps the communications isolated from the gateway.
Other services at the higher level of the architecture are the OntoFlow, the ExecFlow, the Database

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 9 | 35

Information Service (DIS), the Verification and Validation (V&V) Services, the Multicriteria Optimisation
(MCO), and Business Decision Support System (BDSS) Services.
In a holistic view, OntoFlow can be considered the heart of the platform. It is responsible for specifying
and building the workflow based on input specifications, including KPIs from the user. ExecFlow is the
workflow executor based on the AiiDA. AiiDA is an open-source Python infrastructure created to help
researchers automate, manage, persist, share and reproduce the complex workflows associated with
modern computational science and all associated data.
Verification and validation (V&V) services validate the executed workflows and perform the so-called
gap analysis.

The complete set of business, technical and simulation KPIs are then passed to the OpenModel
semantic workflow builder, OntoFlow, that utilises a shared knowledge base documenting available
data sources, models and data sinks as well as an enhanced set of attributes of materials modelling
workflow elements. OntoFlow suggests a set of possible workflows that can be evaluated and se-lected
by the translator before executing them with the workflow runner, ExecFlow. ExecFlow fetches the
needed input to the workflow either directly from the databases integrated into the OpenModel
platform in a standardised manner or from external sources like OTE or a Materials Modelling
Markeplace (MMMP). The results may be available in an internal database or uploaded to an external
marketplace, OTE or BDSS, as chosen by the user. Hence, OpenModel selects, opti-mises, builds and
executes complex workflows chosen by the industry, considering technical and business requirements
directly. Including the KPIs and MCO enables a straightforward integration of the entire workflow
building into existing BDSS, as it facilitates the choice of models and tools. In essence, OpenModel
provides a novel decision or recommendation system to support users in choosing the proper
workflows and components to execute.

DEMONSTRATION OVERVIEW

The proof-of-concept of OIP selected for D5.5 is based on the molecular dynamics simulation of water.

The current demo is divided in three workflows with an increasing level of complexity. In D5.5 we will

give an overview of the demonstration phases and results. The full demonstration is available on the

H2020-OpenModel repository https://github.com/H2020-OpenModel/Public

Figure 4: Molecular dynamics simulation of water.

https://urldefense.com/v3/__https:/github.com/H2020-OpenModel/Public__;!!NH8t9uXaRvxizNEf!TFuZ9Kkd8O2OxGpJIrMhtVESG_RtASzGqRQ2By-SsN69D_HGsewqOS5qL5TMk0se6wgiD0OZjQhOGwXeEWM2x0D5g4F8p6E$

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 10 | 35

Specifically, the demo is organised as follows:

1. A molecular dynamics simulation of 512 water molecules to demonstrate the use of ontol-

ogies for the description, execution, and data management of a simple workflow.

2. A workflow sharing the basic structure of demo [1.], but extended to cover 10 solvents,

each described with 3 different material models. This calculation is used also to demon-

strate the MCO and V&V services.

3. Full multiscale workflow of the wettability of a polymer membrane.

The first demonstration is based on a simple workflow, whose mereological representation is shown

in Figure 5. The workflow uses four datasets: the first one (dataset 1) is the input for task A

Figure 5: Mereological representation of the Demo number 1.

and includes the metadata controlling the physics-based simulation. The second dataset (dataset 2) is

created by task A and used as input for task B. The dataset 3 is the output of task B and contains

thermodynamic observables at a given pressure and temperature. Task C is a post-processing step

taking the dataset 3 as input. It parses dataset 3 and averages the density at equilibrium and outputs

a final data set (density). The task A is the pre-processing of the initial structure and force field, done

with the program MOLTEMPLATE, while task B is a physics-based molecular dynamics simulation

(RoMM 2.2.2.1) executed with the program LAMMPS. The BPNM representation of the workflow,

shown in Figure 6 highlights the data flow between tasks A and B, and the causal sequence of execution

of the two programs.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 11 | 35

Figure 6: Workflow of the demo number 1 represented as a BPMN diagram.

An initial stub of the Knowledge Base (KB) has been instantiated using EMMO classes and
perspectives to create a comprehensive taxonomy of models, materials, and processes. The
schematic representation of the OpenModel workflow taxonomy is shown in Figure 7.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 12 | 35

Figure 7: Schematic representation of the Knowledge Base describing the demo number 1.

The ontology provides rules for combining different simulations, if they share certain compo-
nents, and exploits a modular approach based on units of information. For instance, a fine
description of the demo workflow shows that several basic units are shared among different
workflows (Figure 8).

Figure 8: Ontological representation of different workflows sharing reusable components.

The gap analysis performed by the Verification and validation (V&V) services aims at identify-
ing those conditions where the model fails to agree with the reference data (black spots) and

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 13 | 35

regions where lack of reference data does not allow the validation of the model (blind spots).
The validation and verification will be performed on 10 solvents using 3 models, namely at-
omistic, united atoms, and coarse-grained force fields. At the time of writing, the V&V services
have been presented as a stand-alone component which is not yet integrated with the other
software components of the OpenModel platform.

Figure 9: Extension of the demo number 1 for the Verification & Validation services.

The MCO will compare the results with reference data and assign a cost function based on the
wall-time and resources used. The use of the MCO is demonstrated on the dataset created for
the V&V services (i.e., the solvents listed in Figure 9), where the result of molecular simula-
tions is linked to the model which has been used to describe the system. A taxonomy of com-
putational models and materials relations, shown in Figure 10, is used to specify the atomistic
and coarse-grained (mesoscopic) force fields used to compute the same physical observables,

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 14 | 35

thus linking Key Performance Indicators to numerical accuracy. The design of a general
knowledge base allows an easy on-boarding of the six industrial cases that are being devel-
oped to demonstrate the functionality of the OpenModel infrastructure.

Figure 10: Taxonomy of materials models and relations used to specify the computational models used for

the demo number 1.

2 EXECUTION AND DOCUMENTATION

The demo number 1 is an atomistic molecular dynamics (MD) simulation that uses the software

Moltemplate to manage the creation of the simulation input, and LAMMPS as the MD engine. This

section describes how to install the necessary software on a workstation. The workflow requires a

recent version of python >3.9, suggested 3.10, to work. Starting from a knowledge base (i.e. OntoKB)

describing the various tasks and their input/output datasets, OntoFlow builds a tree of all the possible

workflows leading to the density of a fluid. The output of OntoFlow is a high-level description of the

executable workflows, leading to one or more solutions for a user-specified query. The conversion

between the ontological representation of a workflow and its serialisation in the YAML format (i.e.,

the declarative workflow syntax used in ExecFlow) is out of the scope of this demonstration and will

be addressed in a future deliverable. Machine-executable scripts describing the three solutions iden-

tified by OntoFlow are provided for execution in AiiDA, thus demonstrating the use of ExecFlow and

OTEAPI pipelines for the execution of a physics-based simulation.

http://www.moltemplate.org/
https://lammps.org/

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 15 | 35

2.1 INSTALLING THE OPENMODEL SOFTWARE STACK

The local execution of this demonstration requires the following software components, which are the

core OpenModel software stack. Here are the steps necessary to install the software.

The original instructions to set up a working AiiDA environment can be found at the following link.

Please refer to the official AiiDA documentation for troubleshooting. Here we report the steps to per-

form a system-wide installation on a Debian/Ubuntu OS. Open a terminal and execute:

sudo apt install git python3-dev python3-pip postgresql postgresql-server-dev-all postgresql-client rab-

bitmq-server

To avoid clash with locally installed libraries (e.g., VMD), modify the file $HOME/envs/aiida/bin/acti-

vate by adding the following line:

export LD_LIBRARY_PATH=""

Then (from AiiDA instructions):

$ python -m venv ~/envs/aiida

(aiida) $ verdi quicksetup

(aiida) $ verdi daemon start 2

Clone the OpenModel Public repository and install the python modules including ontoflow, execflow,

and oteapi-dlite. Open a terminal and execute:

git clone https://github.com/H2020-OpenModel/Public.git

cd Public/Deliverable5.5

pip install -e .

To avoid changing the names of local files stored in the repository, absolute paths with root /tmp/Ex-

ecFlowDemo have been used. Independently from where your repository is stored, create a symbolic

link as follows:

cd /tmp

ln -s /path/to/ExecFlowDemo

At the time of writing, these are the versions of the various python packages installed:

aiida-core 2.4.0

https://aiida.readthedocs.io/projects/aiida-core/en/latest/intro/get_started.html
https://github.com/H2020-OpenModel/Public
https://github.com/H2020-OpenModel/Public.git

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 16 | 35

aiida-shell 0.3.0

execflow 0.1.0

execflowdemo 0.1.0 #This is installed by pip install in the Public/Deliverable5.5

oteapi-core 0.4.3

oteapi-dlite 0.1.4

otelib 0.3.2

tripper 0.2.6

In addition to installing the core components of OpenModel, the softwares used in the D5.5 demo

must be installed:

Install Moltemplate: the original instructions can be found at the following link. Open a terminal and

execute:

git clone https://github.com/jewettaij/moltemplate moltemplate

Add the following lines to ~/.bashrc:

export PATH="$PATH:/path/to/moltemplate/moltemplate"

export PATH="$PATH:/path/to/moltemplate/moltemplate/scripts"

There are also alternative ways of installing Moltemplate, e.g., through pip. See the INSTALL.md file in

the Moltemplate repository on GitHub.

Install LAMMPS: the easiest option is to download a static linux binary and copy the file to a folder on

the $PATH, e.g /usr/local/bin. Alternatively, LAMMPS can be compiled from the source code using

make or cmake. Follow the instructions here. Note that the LAMMPS binary in the YAML scripts is called

lmp_23Jun22. You can either create a symbolic link with that name to any other valid LAMMPS binary

file, or replace the string command: "lmp_23Jun22" in the files workflow_nopipes.yaml, work-

flow_1oteapi.yaml, and workflow_2oteapi.yaml with the name of your local LAMMPS binary.

Finally, in the current implementation of OntoFlow, StarDog is used as TripleStore. The already in-

stalled tripper (installed as a dependency of OntoFlow, see above) has a back-end for StarDock, but

the actual StarDog installation needs a license. We refer to StarDog for instructions on this.

2.2 OPENMODEL ONTOLOGY

A general ontology for OpenModel has been developed, which uses EMMO v1.0.0-beta5 as top refer-

ence ontology. It contains the following EMMO modules:

• mereocausality.

http://www.moltemplate.org/
http://www.moltemplate.org/download.html
https://github.com/jewettaij/moltemplate
https://lammps.org/
https://download.lammps.org/static/
https://docs.lammps.org/Install.html
https://github.com/emmo-repo/EMMO/tree/1.0.0-beta5

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 17 | 35

• disciplines: chemistry, computerscience, isq, materials, math, metrology, models,units/si-

dimensionalunits.

• perspectives: data, holistic, perceptual, perholistic, persistence, perspective, physicalistic,

properties, reductionistic, semiotics, standardmodel, symbolic, workflow.

The OpenModel ontology extends EMMO classes with a detailed taxonomy of materials models, soft-

ware packages, input files, input parameters, boundary conditions, file created and exchanged, pro-

gramming and scripting languages, variables, and materials, as shown in Figure 11.

The new classes encode the meaning of methods, parameters, and their connections. For example, the

abstract concept of a force field such as GROMOS refers to a collection of potential functions and pa-

rameters specific for this materials model. A possible serialisation of this particular materials model

can be expressed as a file which has spatial overlap with specific parameters and keywords. The key-

words also bind the file’s syntax to an interpreter (e.g., a particular molecular dynamics code).

The ontology’s level of details is needed to ensure that there is enough information to reconstruct a

machine-executable workflow, and to provide a documentation of the tasks and methodologies used

in different use cases. The OpenModel ontology has been designed to describe not only the workflow

used to demonstrate the platform, but also the six success stories developed on WP5. By having dif-

ferent workflows and tasks described by the same ontology and stored in the same knowledge base,

it will be possible to infer new connections between materials models and to create new workflows

that can solve increasingly more complex problems.

Figure 11: Taxonomy tree of the OpenModel ontology, nested into the EMMO top-level ontology.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 18 | 35

2.3 ONTOFLOW

OntoFlow serves as a tool for designing and constructing workflows using ontological classes and rela-

tions. It has the capability to automatically identify and recommend the most appropriate combination

of models, tools, and actions needed to achieve a specific desired outcome based on given inputs. To

achieve this, OntoFlow utilises a knowledge base to navigate and match various workflows based on

their underlying meanings, thereby comprehending their connections. Among the retrieved ones, the

best workflow can be ascertained using uncomplicated cost-based guidelines or more complex ap-

proaches like Multi-Criteria Optimizers (MCO).

The OntoFlow framework consists of two key components (Figure 12): the knowledge base (On-

toFlowKB) and the decision-making component (OntoFlowDM). OntoFlowKB is essentially a triplestore

database that is purpose-built to store and manage semantic information, including the associations

between ontological concepts. It draws upon the advancements made in the related OntoTrans pro-

ject. OntoFlowDM, on the other hand, functions as the core element responsible for making decisions

with the workflows. This involves integrating various Multi-Criteria Optimizers (MCOs) to facilitate the

decision-making process.

Figure 12: Illustration of OntoFlow framework consisting of two key components: the knowledge base (On-

toFlowKB) and the decision-making component (OntoFlowDM)

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 19 | 35

Going into a bit more detail about the components involved in this demonstration, OntoFlowKB is a

triplestore-based component that offers the ability not only to store information related to ontological

concepts of workflows (general and otherwise) but also to query them through the use of SPARQL

queries and infer new ones thanks to the appropriate engine. In addition, the implementation of On-

toFlowKB attempts to free itself from the technology concretely used for the triplestore by exploiting

abstraction interfaces that allow it to interact in a completely agnostic manner. This is done by means

of the Tripper, a tool developed by SINTEF.

The triplestore on which this demonstration is based is Stardog, a commercial solution that has already

been adopted and validated in the OntoTrans project.

OntoFlowKB represents the main tool on which the route-finding algorithm implemented within On-

toFlowDM is based. This algorithm, comprised into the tripper package, allows the retrieval of all pos-

sible routes that manage to generate a precise output, starting from what are the inputs available or

to be requested externally. In its current version, the algorithm works backward from output to final

inputs. Among the advantages of this approach is the ability to be able to explore only those ontology

branches that are actually connected to the desired output; this is advantageous in large search spaces

such as in the case of a knowledge base storing diverse and apparently unrelated materials models.

The ontology navigation, which allows for route reconstruction, is done based on how entities, defined

by ontology objects, can be generated from model computations, simulations, or tasks. The algorithm

assumes that such information is modelled through the EMMO ontology and, therefore, the queries

that are performed are based on the use of hasInput and hasOutput predicates to reconstruct the

chain of relationships. Optionally, other predicates are also used to navigate the ontology, this is the

case with subclassOf or instanceOf, which are useful in all those cases where there are additional levels

of structure and abstraction between input and output.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 20 | 35

The algorithm terminates when there are no more elements that can be derived from Task, thus de-

fining the input dataset needed for the entire process.

2.4 ONTOFLOW AND ONTOKB EXECUTION

This section illustrates how to use OntoFlow in practice. In this example of usage, OntoFlow is used to

retrieve all the possible pathways leading to the computation of the density of a fluid (water, in this

case). The semantic representation of materials modelling workflows, data, and computational meth-

ods is based on a domain ontology developed using EMMO v1.0.0-beta5 as top reference.

A simple query to the OntoKB is presented in the file application.py. Basically, the user asks for any

route leading to the computation of the density of a fluid, expressed by the ontological class with IRI

http://emmo.info/emmo#FluidDensity. From a terminal, execute:

cd Public/Deliverable5.5/ontoKB

python application.py

The result of this query is a branched tree of the possible pathways leading to the computation of the

density of a fluid. A graphical representation of the various paths is shown in Figure 13.

https://github.com/emmo-repo/EMMO/tree/1.0.0-beta5

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 21 | 35

The demonstration of OntoFlow is based on a python script which is structured in the following way.

The first step, not strictly related to OntoFlow, is to store the ontology information and related con-

cepts within OntoKB. This can be done programmatically by exploiting the abstraction interface de-

scribed earlier.

A new triplestore database is initialised with the Triplestore class, which represents the main abstrac-

tion element between tripper and the OntoFlow architecture, and allows to perform all the classical

operations of a triplestore without being bound to a specific implementation. In the case of the code

snippet in the figure, the Triplestore class is first used to create a database called d55_usecase and

then to obtain an instance (e.g. ts) that will later be used to interact with the newly created database.

Note how the Triplestore class needs some configuration information related to the location of the

triplestore as well as the technology used underneath, in this case Stardog.

Figure 13: Graphical representation of all the possible workflows leading to the computation of the density

of a fluid.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 22 | 35

Next, two files in the turtle syntax are loaded, the first one being an ontology containing the schema

of the classes supporting the use case, and the second containing the instances (individuals) of the

relevant classes, thus forming a knowledge base. The saving is done through a parse method executed

on the previously created instance of Triplestore that takes, among possible arguments, the name of

a file.

The core of the OntoFlow library is the OntoFlowDMEngine class, with which the search algorithm can

be used. This class needs first to be instantiated with some configuration parameters, i.e. the triple-

store instance that the engine will use to perform the necessary queries, a file containing the cost

definition, and the MCO interface that will be used in the process. Since the emphasis of this demon-

stration is on the identification of possible workflows from a query, no additional details will be pro-

vided on the cost functions and MCO optimisation. This will be the subject of future demonstations.

The actual search is done via the engine's getmappingroute method, to which the URI of the ontology

object for which the routes are to be obtained must be passed. Optionally, a list of strings can also be

passed and in this case the algorithm will be executed iteratively on each of them.

At the end of the search, a dictionary is provided as output containing for each URI passed as input,

the set of routes obtained in tree form (this means that any nodes in common to the routes are re-

peated).

2.5 WORKING WITH OTEAPI PIPELINES

In the OpenModel platform, input and output datasets are managed through pipelines that provide

mappings to semantic concepts and interoperability between different data serialisations. In the demo

number 1, the input dataset is a simple YAML file containing the following key-value pair:

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 23 | 35

moltemplate_input:

 meta: http://ontotrans.eu/meta/0.1/FluidNPTInput

 dimensions: {}

 properties:

 run: "water_aa"

 ts: 2

 temp: 298.15

 p: 1.0

 cutoff: 13.

 cl: 40

 s: 5

 prod: 400

 force_field1: "water.lt"

 aa_atb: "aa_atb.lt"

 aa_tasks: "aa_tasks.lt"

 TYPE1: TIP3

 nmols1: 64

The input dataset is described by a data model (in this case it is actually a serialized instance of the

data model), which is a JSON file with the following structure:

{

 "uri": "http://ontotrans.eu/meta/0.1/FluidNPTInput",

 "description": "Data model describing input variables for the simulation",

 "dimensions": [],

 "properties": {

 "run": {

 "type": "str",

 "description": "Name of the root files created by MOLTEMPLATE and LAMMPS."

 },

 "ts": {

 "type": "int",

 "description": "Time step for numerical integration.",

 "unit": "fs"

 },

 "temp": {

 "type": "float",

 "description": "Temperature",

 "unit": "K"

 },

 "p": {

 "type": "float",

 "description": "Pressure.",

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 24 | 35

 "unit": "atmospheres"

 },

 "cl": {

 "type": "int",

 "description": "Correlation length, used to sample the thermodynamic output."

 },

 "s": {

 "type": "int",

 "description": "Sample interval, used to sample the thermodynamic output."

 },

 "prod": {

 "type": "int",

 "description": "Number of steps to be computed in the current MD simulation."

 },

 "force_field1": {

 "type": "str",

 "description": "Filename of the force field for the 1st molecule type in the simulation."

 },

 "aa_atb": {

 "type": "str",

 "description": "LT file containing the macros for the GROMOS-ATB force field."

 },

 "aa_tasks": {

 "type": "str",

 "description": "LT file containing the macros defining various simulation styles and thermodynamic

outputs."

 },

 "TYPE1": {

 "type": "str",

 "description": "Name of the 1st molecule type in the simulation, as defined in the corresponding LT

file."

 },

 "nmols1": {

 "type": "int",

 "description": "Number of molecules of type 1."

 }

 }

}

The data model is constructed with:

• A URI uniquely identifying the data model. The data model filename does not have to

match the URI label (domain/version/label) as DLite parse all the data models in the source

directories. However, it makes life easier to have consistent filenames and labels.

• A human readable description of the data model.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 25 | 35

• A set of dimensions used by the properties. In our case all properties are scalar, so no di-

mensions has to be specified.

• An entry for each property in the data set, containing:

◦ property name

◦ property type, ex: "str", "int", "float", "boolean", …

◦ property shape (not needed for scalars)

◦ property description”, which is a human-readable explanation of the datum

The pipeline used to load the input dataset in the demo number 1 follows:

version: 1

strategies:

 - dataresource: load_data

 downloadUrl: file:///tmp/ExecFlowDemo/meso_multi_sim_demo/input/moltemplate_input3.yml

 mediaType: application/vnd.dlite-parse

 configuration:

 driver: yaml

 label: parameters_input

 - mapping: mappings

 mappingType: triples

 prefixes:

 emmo: http://emmo.info/emmo#

 om: http://emmo.info/emmo/domain/openmodel#

 map: http://emmo.info/domain-mappings#

 fluid: http://ontotrans.eu/meta/0.1/FluidNPTInput#

 triples:

 - ["fluid:run", "map:mapsTo", "om:Root"]

 - ["fluid:ts", "map:mapsTo", "om:Timestep"]

 - ["fluid:temp", "map:mapsTo", "om:ThermodynamicTemperature"]

 - ["fluid:p", "map:mapsTo", "om:Pressure"]

 - ["fluid:cutoff", "map:mapsTo", "om:CutoffRadius"]

 - ["fluid:cl", "map:mapsTo", "om:CorrelationLength"]

 - ["fluid:s", "map:mapsTo", "om:SamplingInterval"]

 - ["fluid:prod", "map:mapsTo", "om:ProductionSteps"]

 - ["fluid:force_field1", "map:mapsTo", "om:WaterTIP3PLT"]

 - ["fluid:aa_atb", "map:mapsTo", "om:GROMOSSettingsLT"]

 - ["fluid:aa_tasks", "map:mapsTo", "om:AAMDTaskLT "]

 - ["fluid:TYPE1", "map:mapsTo", "om:MolecularType"]

 - ["fluid:nmols1", "map:mapsTo", "om:NumberMolecules"]

 - function: cuds2datanode

 functionType: aiidacuds/cuds2datanode

 configuration:

 names: from_cuds

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 26 | 35

 - function: write_masterfile_lt

 functionType: application/vnd.dlite-generate

 configuration:

 driver: template

 location: /tmp/water_aa.lt

 options: "template=/tmp/ExecFlowDemo/meso_multi_sim_demo/case_aiida_wrapper/lt_wa-

ter_aa.template;engine=jinja"

 label: parameters_input

 - function: file2collection

 functionType: aiidacuds/file2collection

 configuration:

 path: /tmp/water_aa.lt

 label: lt_input

pipelines:

 pipe: load_data | mappings | write_masterfile_lt | file2collection |

 cuds2datanode

This pipeline creates two AiiDA DataNodes with labels parameters_input and lt_input, which are then

imported into the declarative workchain script. The ontological classes to which the input parameters

are mapped to are defined in the OpenModel domain ontology and are explained in the next section.

Data pipeline specifications:

• Each “-“ specifies the type of strategy used (in this case a data_resource, a mapping and

three function strategies), acting as filters in the data pipe.

• "load_data" is an ID attached to a strategy to read the input dataset (this example is the

file moltemplate_input3.yml) and is used to put the filters together in the specificaltion of

the partial pipeline (at the bottom of the file).

• The “downloadUrl” specifies where to fetch the data

• “mediaType” specifies which strategy to use to parse the input dataset.

• For this strategy (mediaType) there are additional parameters specified: the driver: dlite-

parse, and a label: that points to the parsed dataset. Later in the pipe, the dataset can be

assessed with the label input_dataset1.

• In the "mapping" strategy a local name is given (mappings)

◦ The mappings use a set of prefixes. These are not required, but make the readability

easier for humans. The prefixes are:the URI of the EMMO ontology (not used in this

example).

◦ the URI of the OpenModel ontology.

◦ the URI of the mapping ontology, developed in the OntoTrans project.

◦ the URI of the JSON data model, described above.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 27 | 35

• The mappings the are provided as a list of "subject · predicate · object" triplets specifying

the mapping relations between the data model (in this example, fluid:) and ontological

concepts. The list of subjects to map must be consistent with the input dataset, e.g. it must

have the same properties.

◦ Furthermore, there is a strategy for generating the file needed for the software. Ituses

the functionType: application/vnd.dlite-generate to write the dataset into a TEMPLATE

FILE. The configuration: specifies additional parameters:“driver”: which dlite storage

plugin to use. template.py replaces variables in a template file, written in the jinja or

python-format template syntax.“location”: the destination of the output file.

◦ “options” for the the path of the template file to be used, and the engine used to

interpret the template file (possible values: jinja or format).“label” is a reference to

the label created by the dataresource strategy. The result is that the input dataset is

substituted into the template file, resulting in a serialised output file.

◦ The function “file2collection” takes the file from the path: and puts it into a collection,

i.e. it creates an AiiDA data node from the input file written by a previous filter. The

configuration: specifies additional parameters:

◦ “path” to the file written by the previous filter, specified with the location key.“label”

is the ID attached to the datanode, that is retrieved in the execflow.oteapipipeline step

using the from_cuds keyword.

This pipeline uses the Jinja2 syntax to turn an input file into a generic template, whose values are

provided separately from the input dataset. In this example, we use the Jinja delimiters for expressions

to print to the template output: {{ ... }}. For example:

Template Output

This is a LAMMPS TEMPLATE file,

with hard-coded values replaced

with Jinja web template syntax.

write_once("In Init"){

 # Input variables.

 variable run string {{ run }}

 variable ts equal {{ ts }}

 variable tf equal {{ temp }}

 variable p equal {{ p }}

 variable cl equal {{ cl }}

 variable s equal {{ s }}

 variable prod equal {{ prod }}

This is a LAMMPS TEMPLATE file,

with hard-coded values replaced

with Jinja web template syntax.

write_once("In Init"){

 # Input variables.

 variable run string water_aa

 variable ts equal 2

 variable tf equal 298.15

 variable p equal 1.0

 variable cl equal 40

 variable s equal 5

 variable prod equal 400

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 28 | 35

 # PBC

 boundary p p p

}

Import the force field.

import {{force_field1}}

import {{aa_atb}}

ff = new atb_long

Create the molecules.

sol = new {{TYPE1}}[{{nmols1}}]

Create the initial velocity.

write_once("In Run"){

 variable r format r1 %.0f

 velocity all create \$\{tf\} \$r dist gaussian

 # Apply the SHAKE algorithm

 # to hydrogen atoms.

 fix SHK all shake .0001 10 0 m 1.0079 a 1

}

Define the task to execute.

import {{aa_tasks}}

task = default

run = new aa_npt

 # PBC

 boundary p p p

}

Import the force field.

import water.lt

import aa_atb.lt

ff = new atb_long

Create the molecules.

sol = new TIP3[64]

Create the initial velocity.

write_once("In Run"){

 variable r format r1 %.0f

 velocity all create \$\{tf\} \$r dist gaussian

 # Apply the SHAKE algorithm

 # to hydrogen atoms.

 fix SHK all shake .0001 10 0 m 1.0079 a 1

}

Define the task to execute.

import aa_tasks.lt

task = default

run = new aa_npt

The master file is written from the template and stored to an AiiDA DataNode using the file2collection

function. In the main workflow, the parameters_input and lt_input CUDSs are retrieved and passed to

the context with a different name. The individual keys of the input dataset moltemplate_input can be

accessed later in the workflow, e.g., via the ctx.parameters.run variable. Note that this dataset is called

moltemplate_input in the source, parameters_input in the pipeline and the corresponding CUDS, and

finally parameters when it is passed to the context. Its internal structure, however, remains unchanged.

Another data pipeline (pipeline_dependencies.yaml) is used to read another input dataset containing

the URI of various files that are needed by a following task. The mapping strategy links each of those

URIs to an ontological class describing the meaning of corresponding file, while the values of each URI

are stored in an AiiDA DataNode named moltemplate_includes which is then passed to the context

simply as includes and finally accessed, e.g. as "{{ ctx.includes.md_tasks }}".

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 29 | 35

2.6 EXECFLOW

The routes identified by OntoFlow are a high-level description of workflows that can be executed by a

workflow manager such as AiiDA. As there is not yet a software component converting this represen-

tation to a syntax that can be readily executed, individual workflows implementing each of the three

routes have been written by hand in the declarative syntax developed for ExecFlow. To run these ex-

amples, start the AiiDA environment and the Verdi daemon. Open a terminal and execute:

source ~/envs/aiida/bin/activate

verdi daemon start

The three workflows are executed from the AiiDA prompt with verdi running in the background:

cd /path/to/Public/Deliverable5.5/demo1

python run_workflow.py workflow_nopipes.yaml

python run_workflow_pipes.py workflow_1oteapi.yaml

python run_workflow_pipes.py workflow_2oteapi.yaml

The AiiDA nodes are inspected with the commands:

verdi process list -a

verdi node show 5601 #Use the numbers you see from the output above to investigate

verdi node attributes 5601

2.7 DECLARATIVE WORKFLOW SYNTAX

ExecFlow uses AiiDA to execute workflows and a declarative syntax in YAML format to specify them. A

schematic example of a declarative workchain follows, where OTEAPI pipelines are used to load the

input dataset and store the output dataset using the execflow.oteapipipeline function, and an external

software is executed with the wrapper execflow.exec_wrapper.

steps:

 # Create a data pipeline reading the input dataset.

 - workflow: execflow.oteapipipeline

 inputs:

 pipeline:

 $ref: file:pipeline_input.yml

 from_cuds:

 - ...

 postprocess:

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 30 | 35

 - ...

 # Execute a task.

 - workflow: execflow.exec_wrapper

 inputs:

 command: "mysoftware.exe"

 arguments:

 - ...

 files:

 ...

 outputs:

 - ...

 postprocess:

 - ...

 # Output parsing.

 - workflow: execflow.oteapipipeline

 inputs:

 pipeline:

 $ref: file:pipeline_output.yml

 to_cuds:

 - cuds1

 cuds1: "{{ ctx.density }}"

...

More specifically, the workflow describing the demo number 1 with two data pipelines follows :

steps:

 # Create a data pipeline reading the input dataset.

 - workflow: execflow.oteapipipeline

 inputs:

 pipeline:

 $ref: file:pipeline_waterdensity.yml

 from_cuds:

 - parameters_input

 - lt_input

 # The first oteapi pipeline creates the collection and parameter set,

 # which are then passed to the ctx.

 postprocess:

 - "{{ ctx.current.outputs['collection_id'] | to_ctx('collection_uuid') }}"

 - "{{ ctx.current.outputs.results['parameters_input']|to_ctx('parameters') }}"

 - "{{ ctx.current.outputs.results['lt_input']|to_ctx('master_lt') }}"

 # Another pipeline retrieving the file includes, resolved from the URIs

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 31 | 35

 # pointing to various input files.

 - workflow: execflow.oteapipipeline

 inputs:

 pipeline:

 $ref: file:pipeline_dependencies.yml

 from_cuds:

 - moltemplate_includes

 postprocess:

 - "{{ ctx.current.outputs['collection_id']|to_ctx('collection_uuid') }}"

 - "{{ ctx.current.outputs.results['moltemplate_includes']|to_ctx('includes') }}"

 - workflow: execflow.exec_wrapper

 inputs:

 command: "moltemplate.sh"

 arguments:

 - "-atomstyle"

 - "full"

 - "-overlay-all"

 - "-pdb"

 - "{in_pdb}"

 - "{in_lt}"

 files:

 aa_atb:

 filename: "aa_atb.lt"

 template: "{{ ctx.includes.gromos_settings }}"

 aa_tasks:

 filename: "aa_tasks.lt"

 template: "{{ ctx.includes.md_tasks }}"

 random:

 filename: "random_init.lt"

 template: "{{ ctx.includes.random_init }}"

 force_field:

 filename: "water.lt"

 template: "{{ ctx.includes.force_field }}"

 in_pdb:

 filename: "input.pdb"

 template: "{{ ctx.includes.input_structure_pdb }}"

 in_lt:

 filename: "{{ ctx.parameters.run }}.lt" # i.e. "water_aa.lt"

 node: "{{ ctx.master_lt }}"

 outputs:

 - water_aa.in

 - water_aa.data

 - water_aa.in.settings

 - water_aa.in.run

 - water_aa.in.init

 postprocess:

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 32 | 35

 - "{{ ctx.current.outputs['remote_folder']|to_ctx('lammps_dir') }}"

 - "{{ ctx.current.outputs['water_aa_in']|to_ctx('lammps_in') }}"

 - "{{ ctx.current.outputs['water_aa_data']|to_ctx('lammps_data')}}"

 - "{{ ctx.current.outputs['water_aa_in_settings']|to_ctx('lammps_settings') }}"

 - "{{ ctx.current.outputs['water_aa_in_run']|to_ctx('lammps_run') }}"

 - "{{ ctx.current.outputs['water_aa_in_init']|to_ctx('lammps_init') }}"

 - workflow: execflow.exec_wrapper

 inputs:

 command: "lmp_23Jun22"

 arguments:

 - "-in"

 - "{in}"

 - "-l"

 - "water_aa.log"

 files:

 in:

 filename: "water_aa.in"

 node: "{{ ctx.lammps_in }}"

 data:

 filename: "water_aa.data"

 node: "{{ ctx.lammps_data }}"

 settings:

 node: "{{ ctx.lammps_settings }}"

 filename: "water_aa.in.settings"

 run:

 node: "{{ ctx.lammps_run }}"

 filename: "water_aa.in.run"

 init:

 node: "{{ ctx.lammps_init }}"

 filename: "water_aa.in.init"

 outputs:

 - water_aa.log

 - water_aa.dcd

 postprocess:

 - "{{ ctx.current.outputs['water_aa_log']|to_ctx('lammps_log') }}"

 - calcjob: execflowdemo.lammps.density

 inputs:

 log: "{{ ctx.lammps_log }}"

 postprocess:

 - "{{ ctx.current.outputs['density'] | to_results('density') }}"

 - "{{ ctx.current.outputs['density'] | to_ctx('density') }}"

...

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 33 | 35

This workflow contains three tasks (i.e., computations) and two data pipelines. The first two tasks are

based on the execflow.exec_wrapper, which is a generic wrapper based on aiida-shell allowing the exe-

cution of any software that is accessible through the command-line interface (CLI). The wrapper needs

the following inputs:

• “command” specifies the name of the software. The command should be accessible via

the $PATH variable. Alternatively, an absolute path can be used to point to a specific binary

file.

• “arguments” specifies a list of arguments that are passed to the binary. This list is written

to an aiida-shell script using double quotes, therefore every line will be parsed as a single

string.

• “files” contains a nested collection of keys, each specifying an input file that will be written

in a remote directory for execution. The filename: key specifies the name of the file to be

copied in the remote folder. The template: key specifies the source file to be read. The

node: key specifies the content of the file through an AiiDA data node, previously created.

• “outputs” specifies a list of the output files created. Each of the file names in the list is

transformed into an AiiDA SingleFile data node, whose name is created by replacing dots

(.) with a underscore (_) sign.

The last task is a calcjob: used to parse the output file, specified as an AiiDA data node, and producing

a scalar value (the averaged density) as output. In this workflow, the first pipeline writes an input da-

taset (parameters_input) into a template file, creating an input file (lt_input) with a specific syntax. The

input dataset and the input file are stored as AiiDA DataNodes, passed to the context, and accessed

later into the declarative workchain. The second pipeline creates an AiiDA DataNode containing a list

of URIs pointing to the files that are needed later in the workflow. Note that the input files in the first

task (e.g. the moltemplate.sh execution) are written into a remote folder with a specific filename:. If

the source of the file is specified with the template: key, then the argument is the URI of the source

file2. If the source of the file is specified with the node: key , then the content of the remote file is

copied from an AiiDA data node.

3 CONCLUSION

This deliverable describes the overall OIP infrastructure and provides a proof-of-concept demonstra-

tion of the OIP main components and how they holistically work together. The proof-of-concept vali-

dation has been demonstrated with a simple use case based on molecular dynamics simulation of liq-

uid water at room temperature and pressure.

2 The “template:” key is normally used to read a template file with JINJA2 elements which are substituted with
keys from the “parameters:” key, as in the example workflow_nopipes.yaml. However, it can also be used to
simply copy and paste the content of a source file to the destination.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 34 | 35

The value proposition of OpenModel OIP is the use of semantic technologies to search for and identify

patterns in data that might otherwise be difficult to discern. By formally defining workflows and ma-

terial science concepts through ontologies, the platform can help users identify the most efficient so-

lution to a given problem and discover new sources of information and insights. Therefore, the first

demonstration of the OIP focuses on showing the semantic layer's functionality and how it will drive

commercial exploitation. The Product Manager created a sandbox comprising a series of simulation

workflows with increasing complexity (Agile style) based on open-source software and described in a

Knowledge Base (KB) with the following characteristics:

1. Capable of describing materials and processes.

2. Based on reusable components.

3. General and diverse, covering a wide range of use cases.

This KB uses the EMMO top-level ontology to provide compliance with other European projects and

interoperability with third-party software and tools. It includes a general taxonomy to accommodate

the materials, workflows, and computational models for the present demonstration, the six success

stories, and future use cases.

WP5-D5.5 First Demonstra-
tion of OpenModel OIP

© OpenModel Consortium PUBLIC 35 | 35

4 ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may
contain information subject to intellectual property rights. No intellectual property rights are granted by the
delivery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the
information and views expressed herein lies entirely with the author(s).

All rights reserved.

